六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦 > 知識大全 > 方法百科 > 讀書技巧 > 高中三角函數(shù)學習方法

高中三角函數(shù)學習方法

時間: 朝燕820 分享

高中三角函數(shù)學習方法

  目前高一的孩子們正在學習的是三角函數(shù),三角函數(shù)在整個高中數(shù)學中占據(jù)著很大比重,是高中數(shù)學教學的核心,也是描述現(xiàn)實生活中周期現(xiàn)象的重要數(shù)學模型,下面和學習啦小編具體了解下高中三角函數(shù)學習方法。

  高中三角函數(shù)學習方法:

  (1)、立足課本、抓好基礎

  現(xiàn)在高考非常重視三角函數(shù)圖像與性質等基礎知識的考查,所以在學習中首先要打好基礎。

  (2)三角函數(shù)的定義一定要清楚

  我們在學習三角函數(shù)時,老師就會強調我們要把角放在平面直角坐標系中去討論。角的頂點放在坐標原點,始邊放在X 的軸的正半軸上,這樣再強調六種三角函數(shù)只與三個量有關:即角的終邊上任一點的橫坐標x、縱坐標y 以及這一點到原點的距離r 中取兩個量組成的比值,這里得強調一下,對于任意一個α一經(jīng)確定,它所對的每一個比值是唯一確定的,也就說是它們之間滿足函數(shù)關系。并且三者的關系是,x2+y2=r2,x,y 可以任意取值,r 只能取正數(shù)。

  (3)同角的三角函數(shù)關系

  同角的三角函數(shù)關系可以分為平方關系:sin2α+cos2α=1、tan2α+1= sec2α、cotα2+1= csc2α,倒數(shù)關系:tanαcotα=1,商的關系:tanα=sinα/cosα等等,對于同角的三角函數(shù),直接用三角函數(shù)的定義證明比較容易,記憶也比較方便,相關角的三角函數(shù)的關系可以分為終邊相同的角、終邊關于x 軸對稱的角、終邊關于直線y=x 對稱的角、終邊關于y 軸對稱的角、終邊關于原點對稱的角五種關系。

  (4)加強三角函數(shù)應用意識

  三角函數(shù)產生于生產實踐,也被廣泛應用與實踐,因此,應該培養(yǎng)我們對三角函數(shù)的應用能力。

  拓展閱讀:高中三角函數(shù)的公式

  銳角三角函數(shù)公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),(此括號內不是文章內容,來自學習方法網(wǎng),閱讀請?zhí)^),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin²a)+(1-2sin²a)sina

  =3sina-4sin³a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos²a-1)cosa-2(1-sin²a)cosa

  =4cos³a-3cosa

  sin3a=3sina-4sin³a

  =4sina(3/4-sin²a)

  =4sina[(√3/2)²-sin²a]

  =4sina(sin²60°-sin²a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos³a-3cosa

  =4cosa(cos²a-3/4)

  =4cosa[cos²a-(√3/2)²]

  =4cosa(cos²a-cos²30°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  積化和差

  sinαsinβ = [cos(α-β)-cos(α+β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

  誘導公式

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  誘導公式記背訣竅:奇變偶不變,符號看象限

  萬能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

  其它公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

  (4)對于任意非直角三角形,總有

  tanA+tanB+tanC=tanAtanBtanC

  證:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得證

  同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

1006613