六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>復(fù)習(xí)方法>

數(shù)學(xué)函數(shù)復(fù)習(xí)資料整合

時(shí)間: 欣怡1112 分享

  數(shù)學(xué)學(xué)習(xí),不僅需要勤奮,更需要方法、需要花心思。構(gòu)建每個(gè)章節(jié)的知識(shí)框圖,是很有效的學(xué)習(xí)方法,它串聯(lián)起了所有重、難點(diǎn),幫助你融化貫通、舉一反三。下面是學(xué)習(xí)啦小編分享給大家的數(shù)學(xué)函數(shù)復(fù)習(xí)資料的資料,希望大家喜歡!

  數(shù)學(xué)函數(shù)復(fù)習(xí)資料

  一次函數(shù)

  一、定義與定義式

  自變量x和因變量y有如下關(guān)系:y=kx+b 則此時(shí)稱y是x的一次函數(shù)。

  【特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)】

  二、一次函數(shù)的性質(zhì)

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

  【即:y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))】

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì)

  1.作法與圖形:通過如下3個(gè)步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。

  因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

  2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

  3.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b>0時(shí),直線必通過一、二象限;

  當(dāng)b=0時(shí),直線通過原點(diǎn)

  當(dāng)b<0時(shí),直線必通過三、四象限。

  (特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。)

  四、確定一次函數(shù)的表達(dá)式

  已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

  (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

  (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ... ① 和y2=kx2+b …②

  (3)解這個(gè)二元一次方程,得到k,b的值。

  (4)最后得到一次函數(shù)的表達(dá)式。

  五、一次函數(shù)在生活中的應(yīng)用

  1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

  六、常用公式:(不全面,可以在書上找)

  1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

  3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

  4.求任意線段的長(zhǎng):√(x1-x2)2+(y1-y2)2 (注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

  二次函數(shù)

  一、定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  二、二次函數(shù)的三種表達(dá)式

  一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)2+k [拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?) [僅限于與x軸有交點(diǎn)A(x?,0)和 B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b2)/4a x1,x2=(-b±√b2-4ac)/2a

  三、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  四、拋物線的性質(zhì)

  1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

  x= -b/2a。

  對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P( -b/2a ,(4ac-b2)/4a )

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ= b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  五、二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax2+bx+c,

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax2+bx+c=0

  此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

  函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下:

  解析式 和 頂點(diǎn)坐標(biāo)對(duì) 和 對(duì)稱軸

  y=ax2 (0,0) x=0

  y=a(x-h)2 (h,0) x=h

  y=a(x-h)2+k (h,k) x=h

  y=ax2+bx+c (-b/2a,[4ac-b2]/4a) x=-b/2a

  當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到。

  當(dāng)h>0,k>0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)2+k的圖象;

  當(dāng)h>0,k<0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;

  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;

  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;

  因此,研究拋物線 y=ax2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

  2.拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b2]/4a).

  3.拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而增大;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而減小.

  4.拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

  5.拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時(shí),y最小(大)值=(4ac-b2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=ax2+bx+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)。

  反比例函數(shù)

  形如 y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為|k|。

  知識(shí)點(diǎn):

  1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2.對(duì)于雙曲線y=k/x ,若在分母上加減任意一個(gè)實(shí)數(shù) (即 y=k/(x±m)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

  對(duì)數(shù)函數(shù)

  對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

  對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

  (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

  (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

  (3)函數(shù)總是通過(1,0)這點(diǎn)。

  (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對(duì)數(shù)函數(shù)無界。

  指數(shù)函數(shù)

  指數(shù)函數(shù)的一般形式為,從上面我們對(duì)于冪函數(shù)的討論就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得

  如圖所示為a的不同大小影響函數(shù)圖形的情況。

  可以得到:

  (1) 指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2) 指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

  (3) 函數(shù)圖形都是下凹的。

  (4) a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5) 可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

  (6) 函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

  (7) 函數(shù)總是通過(0,1)這點(diǎn)。

  (8) 顯然指數(shù)函數(shù)無界。

  奇偶性

  一、定義

  一般地,對(duì)于函數(shù)f(x)

  (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  說明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言

 ?、谄?、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。

  (分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡(jiǎn)、整理、再與f(x)比較得出結(jié)論)

 ?、叟袛嗷蜃C明函數(shù)是否具有奇偶性的根據(jù)是定義

  二、奇偶函數(shù)圖像的特征

  定理 奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對(duì)稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對(duì)稱圖形。

  f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對(duì)稱

  點(diǎn)(x,y)→(-x,-y)

  奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上也是單調(diào)遞增。

  偶函數(shù) 在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上單調(diào)遞減。

  三、奇偶函數(shù)運(yùn)算

  1.兩個(gè)偶函數(shù)相加所得的和為偶函數(shù).

  2.兩個(gè)奇函數(shù)相加所得的和為奇函數(shù).

  3.一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).

  4. 兩個(gè)偶函數(shù)相乘所得的積為偶函數(shù).

  5.兩個(gè)奇函數(shù)相乘所得的積為偶函數(shù).

  6.一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相乘所得的積為奇函數(shù).

  定義域

  (高中函數(shù)定義)設(shè)A,B是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A--B為集合A到集合B的一個(gè)函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;

  值域

  一、名稱定義

  函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合。

  常用的求值域的方法

  (1)化歸法

  (2)圖象法(數(shù)形結(jié)合)

  (3)函數(shù)單調(diào)性法

  (4)配方法

  (5)換元法

  (6)反函數(shù)法(逆求法)

  (7)判別式法

  (8)復(fù)合函數(shù)法

  (9)三角代換法

  (10)基本不等式法等

  二、關(guān)于函數(shù)值域誤區(qū)

  定義域、對(duì)應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本“元件”。平時(shí)數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無可置疑。

  然而事物均具有二重性,在強(qiáng)化定義域問題的同時(shí),往往就削弱或談化了,對(duì)值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對(duì)函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。

  如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。

  才能獲得正確答案,從這個(gè)角度來講,求值域的問題有時(shí)比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對(duì)值域求法的研究和討論,有利于對(duì)定義域內(nèi)函的理解,從而深化對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)。

  三、“范圍”與“值域”相同嗎?

  “范圍”與“值域”是我們?cè)趯W(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。

  “值域”是所有函數(shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而“范圍”則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。

  也就是說:“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。

  數(shù)學(xué)復(fù)習(xí)注意事項(xiàng)

  1、注重“類比”思想

  不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對(duì)一事物的認(rèn)識(shí)來認(rèn)識(shí)與它相似的另一事物,這種認(rèn)識(shí)事物的思維方法就是類比法。初中學(xué)習(xí)的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基本解題方法上都有著本質(zhì)上的相似。因此采用類比的方法不但省時(shí)、省力,還有助于學(xué)生的理解和應(yīng)用。是一種既經(jīng)濟(jì)又實(shí)效的教學(xué)方法。

  2、注重“數(shù)形結(jié)合”思想

  數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長(zhǎng)。

  函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的“數(shù)形結(jié)合”。函數(shù)圖象就是將變化抽象的函數(shù)“拍照”下來研究的有效工具,函數(shù)教學(xué)離不開函數(shù)圖象的研究。

  3、注重自變量的取值范圍

  自變量的取值范圍,是解函數(shù)問題的難點(diǎn)和考點(diǎn)。正確求出自變量取值范圍,正確理解問題,并化歸為解不等式或不等式組。這需要學(xué)生掌握函數(shù)的思想,不等式的實(shí)際應(yīng)用,全面考慮取值的實(shí)際意義。

  4、注重實(shí)際應(yīng)用問題

  學(xué)習(xí)函數(shù)的主要目的之一就是在復(fù)雜的實(shí)際生活中建立有效的函數(shù)模型,利用函數(shù)的知識(shí)解決問題。這也是新課標(biāo)所倡導(dǎo)的學(xué)習(xí),因此新教材大力倡導(dǎo)函數(shù)與實(shí)際的應(yīng)用。

數(shù)學(xué)函數(shù)復(fù)習(xí)資料整合

數(shù)學(xué)學(xué)習(xí),不僅需要勤奮,更需要方法、需要花心思。構(gòu)建每個(gè)章節(jié)的知識(shí)框圖,是很有效的學(xué)習(xí)方法,它串聯(lián)起了所有重、難點(diǎn),幫助你融化貫通、舉一反三。下面是學(xué)習(xí)啦小編分享給大家的數(shù)學(xué)函數(shù)復(fù)習(xí)資料的資料,希望大家喜歡! 數(shù)學(xué)函數(shù)復(fù)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
3662069