人教版八年級下冊數(shù)學(xué)復(fù)習(xí)提綱
想考個滿意的數(shù)學(xué)成績嗎?那么拿高分必看的復(fù)習(xí)資料來了,請看下文,下面是學(xué)習(xí)啦小編分享給大家的人教版八年級下冊數(shù)學(xué)復(fù)習(xí)提綱的資料,希望大家喜歡!
人教版八年級下冊數(shù)學(xué)復(fù)習(xí)提綱一
§17.1分式及基本性質(zhì)
一、分式的概念
1、分式的定義:如果A、B表示兩個整式,并且B中含有字母,那么式子 叫做分式。
2、對于分式概念的理解,應(yīng)把握以下幾點(diǎn):
(1)分式是兩個整式相除的商。其中分子是被除式,分母是除式,分?jǐn)?shù)線起除號和括號的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能為零。
3、分式有意義、無意義的條件
(1)分式有意義的條件:分式的分母不等于0;
(2)分式無意義的條件:分式的分母等于0。
4、分式的值為0的條件:
當(dāng)分式的分子等于0,而分母不等于0時,分式的值為0。即,使 =0的條件是:A=0,B≠0。
5、有理式
整式和分式統(tǒng)稱為有理式。整式分為單項(xiàng)式和多項(xiàng)式。
分類:有理式
單項(xiàng)式:由數(shù)與字母的乘積組成的代數(shù)式;
多項(xiàng)式:由幾個單項(xiàng)式的和組成的代數(shù)式。
二、分式的基本性質(zhì)
1、分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變。
用式子表示為:= = ,其中M(M≠0)為整式。
2、通分:利用分式的基本性質(zhì),使分子和分母都乘以適當(dāng)?shù)恼?,不改變分式的值,把幾個異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。
通分的關(guān)鍵是:確定幾個分式的最簡公分母。確定最簡公分母的一般方法是:(1)如果各分母都是單項(xiàng)式,那么最簡公分母就是各系數(shù)的最小公倍數(shù)、相同字母的最高次冪、所有不同字母及指數(shù)的積。(2)如果各分母中有多項(xiàng)式,就先把分母是多項(xiàng)式的分解因式,再參照單項(xiàng)式求最簡公分母的方法,從系數(shù)、相同因式、不同因式三個方面去確定。
3、約分:根據(jù)分式的基本性質(zhì),約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。
在約分時要注意:(1)如果分子、分母都是單項(xiàng)式,那么可直接約去分子、分母的公因式,即約去分子、分母系數(shù)的最大公約數(shù),相同字母的最低次冪;(2)如果分子、分母中至少有一個多項(xiàng)式就應(yīng)先分解因式,然后找出它們的公因式再約分;(3)約分一定要把公因式約完。
三、分式的符號法則:
(1)= =-;(2)=;(3)- =
人教版八年級下冊數(shù)學(xué)復(fù)習(xí)提綱二
§17.2分式的運(yùn)算
一、分式的乘除法
1、法則:
(1)乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。(意思就是,分式相乘,分子與分子相乘,分母與分母相乘)。
用式子表示:
(2)除法法則:分式除以分式,把除式的分子、分母顛倒位置后,再與被除式相乘。
用式子表示:
2、應(yīng)用法則時要注意:(1)分式中的符號法則與有理數(shù)乘除法中的符號法則相同,即“同號得正,異號得負(fù),多個負(fù)號出現(xiàn)看個數(shù),奇負(fù)偶正”;(2)當(dāng)分子分母是多項(xiàng)式時,應(yīng)先進(jìn)行因式分解,以便約分;(3)分式乘除法的結(jié)果要化簡到最簡的形式。
二、分式的乘方
1、法則:根據(jù)乘方的意義和分式乘法法則,分式的乘方就是把將分子、分母分別乘方,然后再相除。
用式子表示:(其中n為正整數(shù),a≠0)
2、注意事項(xiàng):(1)乘方時,一定要把分式加上括號;(2)在一個算式中同時含有乘方、乘法、除法時,應(yīng)先算乘方,再算乘除,有多項(xiàng)式時應(yīng)先因式分解,再約分;(3)最后結(jié)果要化到最簡。
三、分式的加減法
(一)同分母分式的加減法
1、法則:同分母分式相加減,分母不變,把分子相加減。
用式子表示:
2、注意事項(xiàng):(1)“分子相加減”是所有的“分子的整體”相加減,各個分子都應(yīng)有括號;當(dāng)分子是單項(xiàng)式時括號可以省略,但分母是多項(xiàng)式時,括號不能省略;(2)分式加減運(yùn)算的結(jié)果必須化成最簡分式或整式。
(二)異分母分式的加減法
1、法則:異分母分式相加減,先通分,轉(zhuǎn)化為同分母分式后,再加減。用式子表示: 。
2、注意事項(xiàng):(1)在異分母分式加減法中,要先通分,這是關(guān)鍵,把異分母分式的加減法變成同分母分式的加減法。(2)若分式加減運(yùn)算中含有整式,應(yīng)視其分母為1,然后進(jìn)行通分。(3)當(dāng)分子的次數(shù)高于或等于分母的次數(shù)時,應(yīng)將其分離為整式與真分式之和的形式參與運(yùn)算,可使運(yùn)算簡便。
四、分式的混合運(yùn)算
1、運(yùn)算規(guī)則:分式的加、減、乘、除、乘方混合運(yùn)算,先乘方,再乘除,最后算加減。遇到括號時,要先算括號里面的。
2、注意事項(xiàng):(1)分式的混合運(yùn)算關(guān)鍵是弄清運(yùn)算順序;(2)有理數(shù)的運(yùn)算順序和運(yùn)算規(guī)律對分式運(yùn)算同樣適用,要靈活運(yùn)用交換律、結(jié)合律和分配律;(3)分式運(yùn)算結(jié)果必須化到最簡,能約分的要約分,保證運(yùn)算結(jié)果是最簡分式或整式。
人教版八年級下冊數(shù)學(xué)復(fù)習(xí)提綱三
§17.3 可化為一元一次方程的分式方程
一、分式方程基本概念
1、定義:方程中含有分式,并且分母中含有未知數(shù)的方程叫做分式方程。
2、理解分式方程要明確兩點(diǎn):(1)方程中含有分式;(2)分式的分母含有未知數(shù)。
分式方程與整式方程最大區(qū)別就在于分母中是否含有未知數(shù)。
二、分式方程的解法
1、解分式方程的基本思想:化分式方程為整式方程。途徑:“去分母”。
方法是:方程兩邊都乘以各分式的最簡公分母,約去分母,化為整式方程求解。
2、解分式方程的一般步驟:
(1)去分母。即在方程兩邊都乘以各分式的最簡公分母,約去分母,把原分式方程化為整式方程;
(2)解這個整式方程;
(3)驗(yàn)根。驗(yàn)根方法:把整式方程的根代入最簡公分母,使最簡公分母不等于0的根是原分式方程的根,使最簡公分母為0的根是原分式方程的增根,必須舍去。這種驗(yàn)根方法不能檢查解方程過程中出現(xiàn)的計(jì)算錯誤,還可以采用另一種驗(yàn)根方法,即把求得的未知數(shù)的值代入原方程進(jìn)行檢驗(yàn),這種方法可以發(fā)現(xiàn)解方程過程中有無計(jì)算錯誤。
3、分式方程的增根。意義是:把分式方程化為整式方程后,解出的整式方程的根有時只是這個整式的方程的根而不是原分式方程的根,這種根就是增根,因此,解分式方程必須驗(yàn)根。
三、分式方程的應(yīng)用
1、意義:分式方程的應(yīng)用就是列分式方程解應(yīng)用題,它和列一元一次方程解應(yīng)用題的方法、步驟、解題思路基本相同,不同的是,因?yàn)橛辛朔质礁拍?,所列代?shù)式的關(guān)系不再受整式的限制,列出的方程含有分式,且分母含有未知數(shù),解出方程的解后還要進(jìn)行檢驗(yàn)。
2、列分式方程解應(yīng)用題的一般步驟如下:
(1)審題。理解題意,弄清已知條件和未知量;
(2)設(shè)未知數(shù)。合理的設(shè)未知數(shù)表示某一個未知量,有直接設(shè)法和間接設(shè)法兩種;
(3)找出題目中的等量關(guān)系,寫出等式;
(4)用含已知量和未知數(shù)的代數(shù)式來表示等式兩邊的語句,列出方程;
(5)解方程。求出未知數(shù)的值;
(6)檢驗(yàn)。不僅要檢驗(yàn)所求未知數(shù)的值是否為原方程的根,還要檢驗(yàn)未知數(shù)的值是否符合題目的實(shí)際意。“雙重驗(yàn)根”。
猜你喜歡:
1.八年級數(shù)學(xué)上冊知識點(diǎn)歸納
2.八年級下數(shù)學(xué)復(fù)習(xí)知識點(diǎn)
3.初二上學(xué)期數(shù)學(xué)知識點(diǎn)歸納