六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>復(fù)習(xí)方法>

初三數(shù)學(xué)圓知識(shí)點(diǎn)歸納有哪些

時(shí)間: 欣怡1112 分享

  數(shù)學(xué)幾何中圓是比較重要的一部分,所以對(duì)圓進(jìn)行復(fù)習(xí)是很有必要的。以下是學(xué)習(xí)啦小編分享給大家的初三數(shù)學(xué)圓知識(shí)點(diǎn)歸納,希望可以幫到你!

  初三數(shù)學(xué)圓知識(shí)點(diǎn)歸納

  一、圓的相關(guān)概念

  1、圓的定義

  在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。

  2、圓的幾何表示

  以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”

  二、弦、弧等與圓有關(guān)的定義

  (1)弦

  連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB)

  (2)直徑

  經(jīng)過圓心的弦叫做直徑。(如途中的CD)

  直徑等于半徑的2倍。

  (3)半圓

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。

  (4)弧、優(yōu)弧、劣弧

  圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。

  弧用符號(hào)“⌒”表示,以A,B為端點(diǎn)的弧記作“ ”,讀作“圓弧AB”或“弧AB”。

  大于半圓的弧叫做優(yōu)弧(多用三個(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示)

  三、垂徑定理及其推論

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。

  推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。

  (2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。

  (3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  垂徑定理及其推論可概括為:

  過圓心

  垂直于弦

  直徑 平分弦 知二推三

  平分弦所對(duì)的優(yōu)弧

  平分弦所對(duì)的劣弧

  四、圓的對(duì)稱性

  1、圓的軸對(duì)稱性

  圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。

  2、圓的中心對(duì)稱性

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  五、弧、弦、弦心距、圓心角之間的關(guān)系定理

  1、圓心角

  頂點(diǎn)在圓心的角叫做圓心角。

  2、弦心距

  從圓心到弦的距離叫做弦心距。

  3、弧、弦、弦心距、圓心角之間的關(guān)系定理

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦想等,所對(duì)的弦的弦心距相等。

  推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  六、圓周角定理及其推論

  1、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。

  2、圓周角定理

  一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  七、點(diǎn)和圓的位置關(guān)系

  設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:

  d

  d=r 點(diǎn)P在⊙O上;

  d>r 點(diǎn)P在⊙O外。

  八、過三點(diǎn)的圓

  1、過三點(diǎn)的圓

  不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  2、三角形的外接圓

  經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。

  3、三角形的外心

  三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個(gè)三角形的外心。

  4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件)

  圓內(nèi)接四邊形對(duì)角互補(bǔ)。

  九、反證法

  先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。

  十、直線與圓的位置關(guān)系

  直線和圓有三種位置關(guān)系,具體如下:

  (1)相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);

  (2)相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,

  (3)相離:直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。

  如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:

  直線l與⊙O相交 d

  直線l與⊙O相切 d=r;

  直線l與⊙O相離 d>r;

  十一、切線的判定和性質(zhì)

  1、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  2、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  十二、切線長(zhǎng)定理

  1、切線長(zhǎng)

  在經(jīng)過圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng)。

  2、切線長(zhǎng)定理

  從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  十三、三角形的內(nèi)切圓

  1、三角形的內(nèi)切圓

  與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。

  2、三角形的內(nèi)心

  三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心。

  十四、圓和圓的位置關(guān)系

  1、圓和圓的位置關(guān)系

  如果兩個(gè)圓沒有公共點(diǎn),那么就說這兩個(gè)圓相離,相離分為外離和內(nèi)含兩種。

  如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么就說這兩個(gè)圓相切,相切分為外切和內(nèi)切兩種。

  如果兩個(gè)圓有兩個(gè)公共點(diǎn),那么就說這兩個(gè)圓相交。

  2、圓心距

  兩圓圓心的距離叫做兩圓的圓心距。

  3、圓和圓位置關(guān)系的性質(zhì)與判定

  設(shè)兩圓的半徑分別為R和r,圓心距為d,那么

  兩圓外離 d>R+r

  兩圓外切 d=R+r

  兩圓相交 R-r

  兩圓內(nèi)切 d=R-r(R>r)

  兩圓內(nèi)含 dr)

  4、兩圓相切、相交的重要性質(zhì)

  如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對(duì)稱圖形,對(duì)稱軸是兩圓的連心線;相交的兩個(gè)圓的連心線垂直平分兩圓的公共弦。

  十五、正多邊形和圓

  1、正多邊形的定義

  各邊相等,各角也相等的多邊形叫做正多邊形。

  2、正多邊形和圓的關(guān)系

  只要把一個(gè)圓分成相等的一些弧,就可以做出這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓就是這個(gè)正多邊形的外接圓。

  十六、與正多邊形有關(guān)的概念

  1、正多邊形的中心

  正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心。

  2、正多邊形的半徑

  正多邊形的外接圓的半徑叫做這個(gè)正多邊形的半徑。

  3、正多邊形的邊心距

  正多邊形的中心到正多邊形一邊的距離叫做這個(gè)正多邊形的邊心距。

  4、中心角

  正多邊形的每一邊所對(duì)的外接圓的圓心角叫做這個(gè)正多邊形的中心角。

  十七、正多邊形的對(duì)稱性

  1、正多邊形的軸對(duì)稱性

  正多邊形都是軸對(duì)稱圖形。一個(gè)正n邊形共有n條對(duì)稱軸,每條對(duì)稱軸都通過正n邊形的中心。

  2、正多邊形的中心對(duì)稱性

  邊數(shù)為偶數(shù)的正多邊形是中心對(duì)稱圖形,它的對(duì)稱中心是正多邊形的中心。

  3、正多邊形的畫法

  先用量角器或尺規(guī)等分圓,再做正多邊形。

  十八、弧長(zhǎng)和扇形面積

  1、弧長(zhǎng)公式

  n°的圓心角所對(duì)的弧長(zhǎng)l的計(jì)算公式為 2、扇形面積公式

  其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長(zhǎng)。

  3、圓錐的側(cè)面積

  其中l(wèi)是圓錐的母線長(zhǎng),r是圓錐的地面半徑。

  初中幾何掌握知識(shí)點(diǎn)然后靈活應(yīng)用比較重要,希望大家牢記知識(shí)點(diǎn)然后靈活應(yīng)用。

  初三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納

  1 過兩點(diǎn)有且只有一條直線

  2 兩點(diǎn)之間線段最短

  3 同角或等角的補(bǔ)角相等

  4 同角或等角的余角相等

  5 過一點(diǎn)有且只有一條直線和已知直線垂直

  6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內(nèi)錯(cuò)角相等,兩直線平行

  11 同旁內(nèi)角互補(bǔ),兩直線平行

  12 兩直線平行,同位角相等

  13 兩直線平行,內(nèi)錯(cuò)角相等

  14 兩直線平行,同旁內(nèi)角互補(bǔ)

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

  18 推論1 直角三角形的兩個(gè)銳角互余

  19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22 邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35 推論1 三個(gè)角都相等的三角形是等邊三角形

  36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線等于斜邊上的一半

  39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44 定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46 勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47 勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  48 定理 四邊形的內(nèi)角和等于360°

  49 四邊形的外角和等于360°

  50 多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

  51 推論 任意多邊的外角和等于360°

  52 平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等

  53 平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等

  54 推論 夾在兩條平行線間的平行線段相等

  55 平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分

  56 平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形

  57 平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形

  58 平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形

  59 平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形

  60 矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

  61 矩形性質(zhì)定理2 矩形的對(duì)角線相等

  62 矩形判定定理1 有三個(gè)角是直角的四邊形是矩形

  63 矩形判定定理2 對(duì)角線相等的平行四邊形是矩形

  64 菱形性質(zhì)定理1 菱形的四條邊都相等

  65 菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66 菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67 菱形判定定理1 四邊都相等的四邊形是菱形

  68 菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形

  69 正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等

  70 正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71 定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72 定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74 等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

  75 等腰梯形的兩條對(duì)角線相等

  76 等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77 對(duì)角線相等的梯形是等腰梯形

  78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

  82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

  83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93 判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比

  98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

  99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  初三數(shù)學(xué)期末易錯(cuò)點(diǎn)總結(jié)

  函數(shù)部分:

  易錯(cuò)點(diǎn)1:各個(gè)待定系數(shù)表示的的意義。

  易錯(cuò)點(diǎn)2:熟練掌握各種函數(shù)解析式的求法,一般情況下有幾個(gè)的待定系數(shù)就要幾個(gè)點(diǎn)的坐標(biāo)代入。

  易錯(cuò)點(diǎn)3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。

  易錯(cuò)點(diǎn)4:利用函數(shù)圖象進(jìn)行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。

  易錯(cuò)點(diǎn)5:與坐標(biāo)軸交點(diǎn)坐標(biāo)一定要會(huì)求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

  易錯(cuò)點(diǎn)6:數(shù)形結(jié)合思想方法的運(yùn)用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會(huì)從復(fù)雜圖形分解為簡(jiǎn)單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。

  圓:

  易錯(cuò)點(diǎn)1:對(duì)弧、弦、圓周角等概念理解不深刻,特別是弦所對(duì)的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。

  易錯(cuò)點(diǎn)2:對(duì)垂徑定理的理解不夠,不會(huì)正確添加輔助線運(yùn)用直角三角形進(jìn)行解題。

  易錯(cuò)點(diǎn)3:對(duì)切線的定義及性質(zhì)理解不深,不能準(zhǔn)確的利用切線的性質(zhì)進(jìn)行解題以及對(duì)切線的判定方法兩種方法使用不熟練。

  易錯(cuò)點(diǎn)4:與圓有關(guān)的位置關(guān)系把握好 d 與 R之間的關(guān)系求解。

  易錯(cuò)點(diǎn)5:圓周角定理是重點(diǎn),同弧(等弧)所對(duì)的圓周角相等,直徑所對(duì)的圓周角是直角,90 度的圓周角所對(duì)的弦是直徑,一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  易錯(cuò)點(diǎn)6:圓的面積公式,圓周長(zhǎng)公式,弧長(zhǎng),扇形面積,圓錐的側(cè)面積以及全面積以及弧長(zhǎng)與底面周長(zhǎng),母線長(zhǎng)與扇形的半徑之間的轉(zhuǎn)化關(guān)系。

  旋轉(zhuǎn)與相似:

  易錯(cuò)點(diǎn)1:對(duì)于常見旋轉(zhuǎn)模型不熟悉,不能通過題目判斷出旋轉(zhuǎn)特征。

  易錯(cuò)點(diǎn)2:相似對(duì)應(yīng)關(guān)系不明確時(shí)注意分類討論。

  易錯(cuò)點(diǎn)3:線段乘積轉(zhuǎn)比例時(shí),注意比例的順序。

  易錯(cuò)點(diǎn)4:常見幾何條件運(yùn)用要熟練、比如中點(diǎn)、角平分線、垂直平分線、等腰直角三角形、等邊三角形、線段的和差,角度的二倍關(guān)系、平行等條件,要熟記相應(yīng)的輔助線。

  易錯(cuò)點(diǎn)5:過于依賴圖形,從圖中看著像的結(jié)論揪住不放,但實(shí)際是錯(cuò)誤的。

  易錯(cuò)點(diǎn)6:旋轉(zhuǎn)方向要看清楚,分清順時(shí)針和逆時(shí)針。

  銳角三角函數(shù):

  易錯(cuò)點(diǎn)1:應(yīng)用三角函數(shù)定義時(shí),要保證直角三角形這個(gè)前提.

  易錯(cuò)點(diǎn)2:在求解直角三角形的有關(guān)問題時(shí),要畫出圖形,以利于分析解決問題.

  易錯(cuò)點(diǎn)3:選擇關(guān)系式時(shí),要盡量利用原始數(shù)據(jù),以防止“累積誤差”.

  易錯(cuò)點(diǎn)4:遇到不是直角三角形的圖形時(shí),要添加適當(dāng)?shù)妮o助線,將其轉(zhuǎn)化為直角三角形求解.

猜你喜歡:

1.中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

2.初三數(shù)學(xué)知識(shí)點(diǎn)整理

3.初三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

4.初中數(shù)學(xué)知識(shí)點(diǎn)歸納

5.初三數(shù)學(xué)備戰(zhàn)中考知識(shí)點(diǎn)大全

3810515