初三數(shù)學知識點歸納有哪些
初三數(shù)學知識點歸納有哪些
初三數(shù)學知識點歸納有哪些?想了解更多的信息嗎,和學習啦小編一起看看吧!以下是學習啦小編分享給大家的初三數(shù)學知識點歸納,希望可以幫到你!
初三數(shù)學圓的知識點歸納
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角
12.①直線L和⊙O相交 d
?、谥本€L和⊙O相切 d=r
?、壑本€L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
?、?兩圓相交 R-rr)
④.兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
?、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
初三數(shù)學復習方法
一、回歸課本,夯實基礎,做好預習。
數(shù)學的基本概念、定義、公式,數(shù)學知識點之間的內(nèi)在聯(lián)系,基本的數(shù)學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確?;靖拍?、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達。復習課的內(nèi)容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點放在自己還未掌握的內(nèi)容上,提高學習效率。
二、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現(xiàn)在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數(shù)學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、建立錯題本,查漏補缺
初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統(tǒng)的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側(cè)重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結(jié)。每次訂正試卷或作業(yè)時,在錯題旁邊要寫明做錯的原因。
初三數(shù)學學習建議
培養(yǎng)良好的學習習慣
(1)制定計劃。從而使學習目的明確,時間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學生主動學習和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨練學習意志。
(2)課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權(quán)。自學不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)專心上課。“學然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
(4)及時復習。這是高效率學習的重要一環(huán)。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯(lián)系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。
(5)獨立作業(yè)。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業(yè)練習使學生對所學知識由“會”到“熟”。
(6)解決疑難。這是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考,實在解決不了的要請教老師和同學,并經(jīng)常把容易錯的地方拿來復習強化,作適當?shù)闹貜托跃毩?,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
(7)系統(tǒng)小結(jié)。這是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復習的基礎上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學知識由“活”到“悟”。
(8)課外學習。課外學習是課內(nèi)學習的補充和繼續(xù),包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展學生的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
猜你喜歡: