初一數(shù)學(xué)上冊第一章知識點歸納
初一數(shù)學(xué)上冊第一章知識點歸納
在初一學(xué)習(xí)數(shù)學(xué),對當(dāng)天所學(xué)過的知識點進行歸納總結(jié)很有必要。 以下是學(xué)習(xí)啦小編分享給大家的初一數(shù)學(xué)上冊第一章知識點,希望可以幫到你!
初一數(shù)學(xué)上冊第一章知識點
第一章 有理數(shù)
知識點一 有理數(shù)的分類
有理數(shù)的另一種分類(①定義;②符號)
想一想:①零是整數(shù)嗎?自然數(shù)一定是整數(shù)嗎?自然數(shù)一定是正整數(shù)嗎?整數(shù)一定是自然數(shù)嗎?
?、诹闶钦麛?shù);自然數(shù)一定是整數(shù);自然數(shù)不一定是正整數(shù),因為零也是自然數(shù);整數(shù)不一定是自然數(shù),因為負(fù)整數(shù)不是自然數(shù)。
知識點二 數(shù)軸
1.填空
?、?規(guī)定了唯一的原點,正方向和單位長度 (三要素)的直線叫做數(shù)軸。
?、?比-3大的負(fù)整數(shù)是-2,-1。
③與原點的距離為三個單位的點有2個,他們分別表示的有理數(shù)是3,-3。
2.請畫一個數(shù)軸,并檢查它是否具備數(shù)軸三要素?
3.選擇題
?、?在數(shù)軸上,原點及原點左邊所表示的數(shù)是( )
A整數(shù) B負(fù)數(shù) C非負(fù)數(shù) D非正數(shù)
?、谙铝姓Z句中正確的是( )
A數(shù)軸上的點只能表示整數(shù)
B數(shù)軸上的點只能表示分?jǐn)?shù)
C數(shù)軸上的點只能表示有理數(shù)
D所有有理數(shù)都可以用數(shù)軸上的點表示出來
知識點三 相反數(shù)
相反數(shù):只有符號不同的兩個數(shù)互為相反數(shù),0的相反數(shù)是0。在數(shù)軸上位于原點兩側(cè)且離原點距離相等。
知識點四 絕對值
1.絕對值的幾何意義:一個數(shù)所對應(yīng)的點離原點的距離叫做該數(shù)的絕對值。
2.絕對值的代數(shù)定義:(1)一個正數(shù)的絕對值是它本身;(2)一個負(fù)數(shù)數(shù)的絕對值是它的相反數(shù);(3)0的絕對值是0;(4)|a|大于或者等于0。
3.比較兩個數(shù)的大小關(guān)系
數(shù)學(xué)中規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從大到小的順序,即左邊的數(shù)小于右邊的數(shù),由此可知:(1)正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);(2)兩個負(fù)數(shù),絕對值大的反而小。
知識點五 有理數(shù)加減法
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
絕對值不相等的異號兩數(shù)相加, 取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
2.互為相反數(shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
4.減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
知識點六 乘除法法則
1.兩數(shù)相乘,同號得 正 ,異號得 負(fù) ,并把絕對值 相乘 。 0乘以任何數(shù),都得 0 。
2.幾個不為0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)確定,負(fù)因數(shù)的個數(shù)為 偶數(shù) 時,積為正;負(fù)因數(shù)的個數(shù)為 奇數(shù) 時,積為負(fù)。
3.兩數(shù)相除,同號得 正 ,異號得 負(fù) ,并把絕對值 相除 。0除以任何一個不等于0的數(shù),都得 0 。
4.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為 倒數(shù) 。
5.除以一個不等于0的數(shù)等于乘以這個數(shù)的 倒數(shù) 。
知識點七 乘方
乘方定義:求n個相同因數(shù)的積的運算,叫做乘方。
在a的n次方中,底數(shù)是a,指數(shù)是n,冪是乘方的結(jié)果;讀作:a的n次方 或a 的n次冪。
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
知識點八 運算律及混合運算
1.加法交換律:a+b=b+a
1.加法交換律:a+b=b+a
2.乘法交換律:a·b=b·a
3.加法結(jié)合律:a+(b+c)=(a+b)+c
4.乘法結(jié)合律:a·(b·c)=(a·b)·c
5.乘法分配律:a·(b+c)=ab+ac
6.有理數(shù)混合運算順序:先乘方;再乘除;最后算加減。
7.有括號,先算括號內(nèi)的運算,按小括號、中括號、大括號依次進行 。
8.同級運算, 從左到右進行 。
知識點九 近似數(shù)
1.近似數(shù):在一定程度上反映被考察量的大小,能說明實際問題的意義,與準(zhǔn)確數(shù)非常地接近,像這樣的數(shù)我們稱它為近似數(shù)。
2.近似數(shù)的分類
(1)具體近似數(shù)(如30.2、58.0 …)
(2)帶單位近似數(shù)(如2.4萬…)
(3)科學(xué)記數(shù)法
3.精確度:用位數(shù)較少的近似數(shù)替代位數(shù)較多或位數(shù)無限的數(shù),有一個近似程度的問題,這個近似程度就是精確度。四舍五入到哪一位,就說精確到哪一位(看精確度得到原數(shù)中去看在哪一位上,如:2.4萬精確到千位,而非十分位,因為2.4萬就是24000,4在千位上)。
4.有效數(shù)字:對于一個不為0的近似數(shù),從左邊第一個不為0的數(shù)字起,到末尾數(shù)止,所有數(shù)字都是這個近似數(shù)的有效數(shù)字。
求近似數(shù)要求保留n個有效數(shù)字時,第n+1個有效數(shù)字作四舍五入處理。
例:0.0109有三個有效數(shù)字1、0、9,要求保留2個有效數(shù)字時,0.0109的第三個有效數(shù)字9四舍五入,變?yōu)?.0110,保留兩個有效數(shù)字1、1后求出近似數(shù)0.0109≈0.011。
初一數(shù)學(xué)上冊代數(shù)初步知識知識點
1.代數(shù)式:用運算符號"+-×÷……"連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用"·"乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用"×"乘,不用"·"乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.
3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.
有理數(shù)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
(3);;
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,.
5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
初一數(shù)學(xué)上冊整式的加減知識點
單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.
2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.
整式分類為:.
6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.
7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.
8.去(添)括號法則:去(添)括號時,若括號前邊是"+"號,括號里的各項都不變號;若括號前邊是"-"號,括號里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.
猜你喜歡:
1.初一數(shù)學(xué)第1章有理數(shù)知識點總結(jié)