初中幾何解題技巧歸納總結(jié)
初中幾何解題技巧歸納總結(jié)
幾何是初中數(shù)學(xué)最主要的內(nèi)容,對(duì)大多數(shù)孩子來(lái)說(shuō)也是比較難的內(nèi)容。所以,為了幫助孩子們更好的學(xué)習(xí)初中幾何,以下是學(xué)習(xí)啦小編分享給大家的初中幾何解題技巧,希望可以幫到你!
初中幾何解題技巧
一要審題。
很多學(xué)生在把一個(gè)題目讀完后,還沒(méi)有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問(wèn)號(hào),再對(duì)應(yīng)圖形來(lái)對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。
二要記。
這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來(lái)。如給出對(duì)邊相等,就用邊相等的符號(hào)來(lái)表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來(lái)。
三要引申。
難度大一點(diǎn)的題目往往把一些條件隱藏起來(lái),所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論,然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長(zhǎng)期的積累,便于以后難題的學(xué)習(xí)。
四要分析綜合法。
分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理??纯唇Y(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對(duì)頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。)結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫出證明過(guò)程。
五要?dú)w納總結(jié)。
很多同學(xué)把一個(gè)題做出來(lái),長(zhǎng)長(zhǎng)的松了一口氣,接下來(lái)去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過(guò)頭來(lái)找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。
以上是常見(jiàn)證明題的解題思路,當(dāng)然有一些的題設(shè)計(jì)的很巧妙,往往需要我們?cè)谔罴虞o助線,分析已知、求證與圖形,探索證明的思路。對(duì)于證明題,有三種思考方式:
(1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問(wèn)題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問(wèn)題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒(méi)有思路,那你一定要注意了:從現(xiàn)在開(kāi)始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過(guò)程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過(guò)程正著寫出來(lái)就可以了。
(3)正逆結(jié)合。對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過(guò)程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長(zhǎng)法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無(wú)不勝。
初中幾何解題建議
一、拿到一道題先去找,找條件,有沒(méi)有特殊的點(diǎn),特殊的線段,特殊的關(guān)系。
二、想,有沒(méi)有學(xué)過(guò)相關(guān)的模型或解題方法。
三、添加輔助線,使得模型完整或是能夠使得特殊圖形的性質(zhì)得以應(yīng)用。
四、從模型中推出能夠得到的結(jié)論,逐步解決問(wèn)題。
五、轉(zhuǎn)化結(jié)論,似的所求更加明顯,使其與已知條件聯(lián)系更緊密。再與第四步結(jié)合進(jìn)行綜合分析。
初中幾何常見(jiàn)輔助線作法歌訣
三角形
圖中有角平分線,可向兩邊作垂線。
也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。
角平分線平行線,等腰三角形來(lái)添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。
三角形中兩中點(diǎn),連接則成中位線。
三角形中有中線,延長(zhǎng)中線等中線。
四邊形
平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。
梯形里面作高線,平移一腰試試看。
平行移動(dòng)對(duì)角線,補(bǔ)成三角形常見(jiàn)。
證相似,比線段,添線平行成習(xí)慣。
等積式子比例換,尋找線段很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項(xiàng)一大片。
圓
半徑與弦長(zhǎng)計(jì)算,弦心距來(lái)中間站。
圓上若有一切線,切點(diǎn)圓心半徑連。
切線長(zhǎng)度的計(jì)算,勾股定理最方便。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
弦切角邊切線弦,同弧對(duì)角等找完。
要想作個(gè)外接圓,各邊作出中垂線。
還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓
如果遇到相交圓,不要忘作公共弦。
內(nèi)外相切的兩圓,經(jīng)過(guò)切點(diǎn)公切線。
若是添上連心線,切點(diǎn)肯定在上面。
要作等角添個(gè)圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。
解題還要多心眼,經(jīng)??偨Y(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。
分析綜合方法選,困難再多也會(huì)減。
虛心勤學(xué)加苦練,成績(jī)上升成直線。
猜你喜歡: