高中數(shù)學(xué)幾何怎么學(xué)
高中數(shù)學(xué)幾何怎么學(xué)
數(shù)學(xué)是一切學(xué)科的基礎(chǔ),學(xué)好數(shù)學(xué)的重要性是不言而喻的,那么高中數(shù)學(xué)幾何如何學(xué)?下面學(xué)習(xí)啦小編收集了一些關(guān)于高中數(shù)學(xué)幾何學(xué)習(xí)方法,希望對你有幫助
高中數(shù)學(xué)幾何學(xué)習(xí)方法1
(一)對于直線及其方程部分,首先我們要從總體上把握住兩突破點:①明確基本的概念。在直線部分,最主要的概念就是直線的斜突破率和傾斜角了以及斜率和傾斜角之間的關(guān)系。傾斜角α的取值范圍是突破[0,π),當(dāng)傾斜角不等于90°的時候,斜率k=tanα;當(dāng)傾斜角=90°的時候,斜率不存在。②直線的方程有不同的形式,同學(xué)們應(yīng)該從不突破同的角度去歸類總結(jié)。角度一:以直線的斜率是否存在進行歸類,可以將直線的方程分為兩類。角度二:從傾斜角α分別在[0,π/2)、α=π/2和(π/2,π)的范圍內(nèi),認(rèn)識直線的特點。以此為基礎(chǔ)突破,將直線方程的五種不同的形式套入其中。直線方程的不同形式突破需要滿足的條件以及局限性是不同的,我們也要加以總結(jié)。
(二)對于線性規(guī)劃部分,首先我們要看得懂線性規(guī)劃方程組所表示的區(qū)域。在這里我們可以采用原點法,如果滿足條件,那么區(qū)域包含原點;如果原點帶入不滿足條件,那么代表的區(qū)域不包含原點。
(三)對于圓及其方程,我們要熟記圓的標(biāo)準(zhǔn)方程和一般方程分別代表的含義。對于圓部分的學(xué)習(xí),我們要拓展初中學(xué)過的一切與圓有關(guān)的知識,包括三角形的內(nèi)切圓、外切圓、圓周角、圓心角等概念以及點與圓的位置關(guān)系、圓與圓的位置關(guān)系、圓的內(nèi)切正多邊形的特征等。只有這樣,才能更加完整的掌握與圓有關(guān)的所有的知識。
(四)對于橢圓、拋物線、雙曲線,我們要分別從其兩種不同突破的定義出發(fā),明白焦點的來源、準(zhǔn)線方程以及相關(guān)的焦距、頂點、突破離心率、通徑的概念。每種圓錐曲線存在焦點在X軸和Y軸上的情況,要分別進行掌握。
高中數(shù)學(xué)幾何學(xué)習(xí)方法2
一、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴(yán)密性,對任何一個定義、定理及推論的理解要做到準(zhǔn)確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時,思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實基礎(chǔ)
學(xué)習(xí)立體幾何的一個捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用
解立體幾何的問題,主要是充分運用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點面距離,點面距離又可轉(zhuǎn)化為點線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進一步加強數(shù)學(xué)與現(xiàn)實世界的聯(lián)系。數(shù)學(xué)模型是把實際問題用數(shù)學(xué)語言抽象概括,再從數(shù)學(xué)角度來反映或近似地反映實際問題時,所得出的關(guān)于實際問題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實際問題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
猜你感興趣: