高中數(shù)學(xué)必修2立體幾何怎么學(xué)
大家都知道數(shù)學(xué)立體幾何是出了名的難學(xué),但是又不得不學(xué),那應(yīng)該怎么學(xué)呢?以下是學(xué)習(xí)啦小編分享給大家的高中數(shù)學(xué)必修2立體幾何的學(xué)習(xí)方法,希望可以幫到你!
高中數(shù)學(xué)必修2立體幾何的學(xué)習(xí)方法
一、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實(shí)基礎(chǔ)
學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫圖能力。可以從簡(jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用
解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問(wèn)題時(shí),所得出的關(guān)于實(shí)際問(wèn)題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問(wèn)題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過(guò)抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識(shí)內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對(duì)培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長(zhǎng)方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識(shí)與周圍的實(shí)物聯(lián)系起來(lái),另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過(guò)程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
高考數(shù)學(xué)如何解立體幾何題
1.平行、垂直位置關(guān)系的論證的策略:
(1)由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。
(2)利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時(shí)應(yīng)優(yōu)先考慮。
2.空間角的計(jì)算方法與技巧:
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角①平移法:②補(bǔ)形法:③向量法:
(2)直線和平面所成的角
?、僮鞒鲋本€和平面所成的角,關(guān)鍵是作垂線,找射影轉(zhuǎn)化到同一三角形中計(jì)算,或用向量計(jì)算。
?、谟霉接?jì)算.
(3)二面角
?、倨矫娼堑淖鞣ǎ?i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
?、谄矫娼堑挠?jì)算法:
(i)找到平面角,然后在三角形中計(jì)算(解三角形)或用向量計(jì)算;(ii)射影面積法 ;(iii)向量夾角公式.
3. 空間距離的計(jì)算方法與技巧:
(1)求點(diǎn)到直線的距離:經(jīng)常應(yīng)用三垂線定理作出點(diǎn)到直線的垂線,然后在相關(guān)的三角形中求解,也可以借助于面積相等求出點(diǎn)到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長(zhǎng)。在不能直接作出公垂線的情況下,可轉(zhuǎn)化為線面距離求解(這種情況高考不做要求)。
(3)求點(diǎn)到平面的距離:一般找出(或作出)過(guò)此點(diǎn)與已知平面垂直的平面,利用面面垂直的性質(zhì)過(guò)該點(diǎn)作出平面的垂線,進(jìn)而計(jì)算;也可以利用“三棱錐體積法”直接求距離;有時(shí)直接利用已知點(diǎn)求距離比較困難時(shí),我們可以把點(diǎn)到平面的距離轉(zhuǎn)化為直線到平面的距離,從而“轉(zhuǎn)移”到另一點(diǎn)上去求“點(diǎn)到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉(zhuǎn)化為點(diǎn)到平面的距離來(lái)求解。
4. 熟記一些常用的小結(jié)論,諸如:正四面體的體積公式是 ;面積射影公式;“立平斜關(guān)系式”;最小角定理。弄清楚棱錐的頂點(diǎn)在底面的射影為底面的內(nèi)心、外心、垂心的條件,這可能是快速解答某些問(wèn)題的前提。
5.平面圖形的翻折、立體圖形的展開等一類問(wèn)題,要注意翻折前、展開前后有關(guān)幾何元素的“不變性”與“不變量”。
6.與球有關(guān)的題型,只能應(yīng)用“老方法”,求出球的半徑即可。
7.立體幾何讀題:
(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。
(2)弄清楚幾何體結(jié)構(gòu)特征。面面、線面、線線之間有哪些關(guān)系(平行、垂直、相等)。
(3)重點(diǎn)留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
8、解題程序劃分為四個(gè)過(guò)程:
?、倥鍐?wèn)題:也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結(jié)論是什么?也就是我們常說(shuō)的審題。
?、跀M定計(jì)劃:找出已知與未知的直接或者間接的聯(lián)系。在弄清題意的基礎(chǔ)上,從中捕捉有用的信息,并及時(shí)提取記憶網(wǎng)絡(luò)中的有關(guān)信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構(gòu)思出一個(gè)成功的計(jì)劃。即是我們常說(shuō)的思考。
?、蹐?zhí)行計(jì)劃:以簡(jiǎn)明、準(zhǔn)確、有序的數(shù)學(xué)語(yǔ)言和數(shù)學(xué)符號(hào)將解題思路表述出來(lái),同時(shí)驗(yàn)證解答的合理性。即我們所說(shuō)的解答。
?、芑仡櫍簩?duì)所得的結(jié)論進(jìn)行驗(yàn)證,對(duì)解題方法進(jìn)行總結(jié)。
高中數(shù)學(xué)立體幾何口訣
學(xué)好立幾并不難,空間想象是關(guān)鍵。點(diǎn)線面體是一家,共筑立幾百花園。
點(diǎn)在線面用屬于,線在面內(nèi)用包含。四個(gè)公理是基礎(chǔ),推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進(jìn)空間。
判定線和面平行,面中找條平行線。已知線與面平行,過(guò)線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過(guò)另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風(fēng)采顯。
空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。
引進(jìn)向量新工具,計(jì)算證明開新篇??臻g建系求坐標(biāo),向量運(yùn)算更簡(jiǎn)便。
知識(shí)創(chuàng)新無(wú)止境,學(xué)問(wèn)思辨勇攀登。
多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關(guān)系全在里。
算面積來(lái)求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開分割好辦法,化難為易新天地。
猜你喜歡:
1.高中的數(shù)學(xué)要怎么學(xué)才學(xué)得好
3.高中數(shù)學(xué)立體幾何的學(xué)習(xí)方法有哪些