大學高數(shù)函數(shù)預習方法有哪些
大學高數(shù)函數(shù)預習方法有哪些
大學高等數(shù)學比起初中高中數(shù)學難多了,想要學好大學高等數(shù)學必須要良好的學習習慣以及學習方法,預習是學習方法中必不可少的一步,下面是學習啦小編分享給大家的大學高等數(shù)學預習方法的資料,希望大家喜歡!
大學高等數(shù)學預習方法
1、課本推薦使用高等教育出版社同濟7版高等數(shù)學(上冊),如學校已發(fā)其它版本的數(shù)學課本,可以使用,無須額外購買。
2、暑假前要求預習前3章
?、俸瘮?shù)與極限
②導數(shù)與微分
?、畚⒎种兄刀ɡ砼c導數(shù)的應用
3、預習要點:背誦前3章節(jié)的公式與定理。
4、課后習題選做2-3題。
5、歷年高數(shù)考試試題低于大綱規(guī)定難度,同學們不要有太大的壓力!
學好大學高數(shù)函數(shù)的注意事項
首先,聽中國教師上課。教師的講解總是重要的,特別是對于低年級的入門性課程。上大學交學費,卻不用教師的資源,顯然不是明智的選擇。與中學聽課更側重解題方法不同,大學的數(shù)學課程更應該聽教師的分析思路和概念解釋。為有更好的聽課效果,課前應簡單預習,了解要講的大致內容;課后要復習。特別注意理論的完整性。多數(shù)數(shù)學課程在具有不同尺度上的理論體系。全部數(shù)學課程是個體系,每門課程又是個子體系,課程中每章又自成體系,而教師組成材料時往往讓每次課也有一定的完整性。
其次,做俄國習題集的題目。想要學好數(shù)學,必須多做練習。完成教師布置作業(yè)后仍有余力,應該把教材上比作業(yè)難的題目也都做了。在此基礎上,我建議從俄國的習題集中找題目做。這出于兩方面的考慮。其一,俄國的數(shù)學教學體系與中國的很接近,更準確地講現(xiàn)在中國的教學體現(xiàn)主要是因襲俄國的,因此比較便于與課堂教學同步練習。其二,俄國很多教材沒有習題或僅有很少的練習,因此必須配套專門的習題集;往往是一本習題集要配不同的教材,所以習題集的內容很豐富。當然,俄國習題集的缺點是題目太大有些是比較機械的重復性練習。最好有內行指點使用。
第三,閱讀英文教材。真正的數(shù)學概念是超越語言的,因此用不同的語言思考數(shù)學問題,有助于理解的深入。一般而言,閱讀英文比中文吃力,因此教材更要精選。不僅要閱讀教材,而且要完成練習,這樣可以檢驗理解程度?;蛟S與課堂教學同步閱讀英文教材不太現(xiàn)實,不僅是時間有限,而且教學體系差別比較大??梢詫W完門課程后再讀英文教材。英文教材需要精選,下次再專門詳細談。
最后,課程之間打通。前面說過,全部數(shù)學課程構成個理論體系。要學好的不僅是每門課程,而且是要把各門課程融會貫通。各門課程的分別僅是為教學方便的側重不同,彼此之間還是有聯(lián)系的。例如,數(shù)學分析課程中多元曲線和曲面積分用得都是Riemann積分,而在實函數(shù)論中將學習Lebesgue積分以及其它抽象積分,這時就應該思考曲線和曲面Lebesgue積分的性質與用途。再例如,高度代數(shù)中講線性空間都是有限維,泛函分析中引入無限維空間,兩者的異同也很值得推敲。
高等數(shù)學考試要求
一、函數(shù)、極限和連續(xù)
(一)函數(shù)
1.理解函數(shù)的概念:函數(shù)的定義,函數(shù)的表示法,分段函數(shù)。
2.理解和掌握函數(shù)的簡單性質:單調性,奇偶性,有界性,周期性。
3.了解反函數(shù):反函數(shù)的定義,反函數(shù)的圖象。
4.掌握函數(shù)的四則運算與復合運算。
5.理解和掌握基本初等函數(shù):冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù),反三角函數(shù)。
6.了解初等函數(shù)的概念。
(二)極限
1.理解數(shù)列極限的概念:數(shù)列,數(shù)列極限的定義,能根據(jù)極限概念分析函數(shù)的變化趨勢。會求函數(shù)在一點處的左極限與右極限,了解函數(shù)在一點處極限存在的充分必要條件。
2.了解數(shù)列極限的性質:唯一性,有界性,四則運算定理,夾逼定理,單調有界數(shù)列,極限存在定理,掌握極限的四則運算法則。
3.理解函數(shù)極限的概念:函數(shù)在一點處極限的定義,左、右極限及其與極限的關系,x趨于無窮(x→∞,x→+∞,x→-∞)時函數(shù)的極限。
4.掌握函數(shù)極限的定理:唯一性定理,夾逼定理,四則運算定理。
5.理解無窮小量和無窮大量:無窮小量與無窮大量的定義,無窮小量與無窮大量的關系,無窮小量與無窮大量的性質,兩個無窮小量階的比較。
6.熟練掌握用兩個重要極限求極限的方法。
(三)連續(xù)
1.理解函數(shù)連續(xù)的概念:函數(shù)在一點連續(xù)的定義,左連續(xù)和右連續(xù),函數(shù)在一點連續(xù)的充分必要條件,函數(shù)的間斷點及其分類。
2.掌握函數(shù)在一點處連續(xù)的性質:連續(xù)函數(shù)的四則運算,復合函數(shù)的連續(xù)性,反函數(shù)的連續(xù)性,會求函數(shù)的間斷點及確定其類型。
3.掌握閉區(qū)間上連續(xù)函數(shù)的性質:有界性定理,最大值和最小值定理,介值定理(包括零點定理),會運用介值定理推證一些簡單命題。
4.理解初等函數(shù)在其定義區(qū)間上連續(xù),并會利用連續(xù)性求極限。
二、一元函數(shù)微分學
(一)導數(shù)與微分
1.理解導數(shù)的概念及其幾何意義,了解可導性與連續(xù)性的關系,會用定義求函數(shù)在一點處的導數(shù)。
2.會求曲線上一點處的切線方程與法線方程。
3.熟練掌握導數(shù)的基本公式、四則運算法則以及復合函數(shù)的求導方法。
4.掌握隱函數(shù)的求導法、對數(shù)求導法以及由參數(shù)方程所確定的函數(shù)的求導方法,會求分段函數(shù)的導數(shù)。
5.理解高階導數(shù)的概念,會求簡單函數(shù)的n階導數(shù)。
6.理解函數(shù)的微分概念,掌握微分法則,了解可微與可導的關系,會求函數(shù)的一階微分。
(二)中值定理及導數(shù)的應用
1.了解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。
2.熟練掌握洛必達法則求“0/0”、“∞/ ∞”、“0•∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的極限方法。
3.掌握利用導數(shù)判定函數(shù)的單調性及求函數(shù)的單調增、減區(qū)間的方法,會利用函數(shù)的增減性證明簡單的不等式。
4.理解函數(shù)極值的概念,掌握求函數(shù)的極值和最大(小)值的方法,并且會解簡單的應用問題。
5.會判定曲線的凹凸性,會求曲線的拐點。
6.會求曲線的水平漸近線與垂直漸近線。