六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 學(xué)習(xí)方法指導(dǎo) > 高一立體幾何重點(diǎn)知識(shí)點(diǎn)以及學(xué)習(xí)方法

高一立體幾何重點(diǎn)知識(shí)點(diǎn)以及學(xué)習(xí)方法

時(shí)間: 素雯896 分享

高一立體幾何重點(diǎn)知識(shí)點(diǎn)以及學(xué)習(xí)方法

  立體幾何一直是高中數(shù)學(xué)的一大難點(diǎn),在已經(jīng)掌握了平面幾何的基礎(chǔ)知識(shí)后,要進(jìn)一步學(xué)好立體幾何的基礎(chǔ)知識(shí)卻并不容易。那么高一的同學(xué)該如何學(xué)好立體幾何?下面是由學(xué)習(xí)啦小編整理的高一立體幾何重點(diǎn)知識(shí)點(diǎn)以及學(xué)習(xí)方法,僅供參考。

  高一立體幾何重點(diǎn)知識(shí)點(diǎn)

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

  分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺(tái):

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺(tái):

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

  斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

 ?、谠瓉?lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

  以上就是高一數(shù)學(xué)立體幾何知識(shí)點(diǎn),希望能幫助到大家。

  高一立體幾何重點(diǎn)知識(shí)點(diǎn)以及學(xué)習(xí)方法一

  第一,建立空間觀念,提高空間想象力

  為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。還可以通過(guò)畫(huà)圖幫助理解,從簡(jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫(huà)起,做到能想象出空間圖形并把它畫(huà)在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫(huà)在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀。

  第二,掌握基礎(chǔ)知識(shí)和基本技能

  直線和平面是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。在學(xué)習(xí)這些內(nèi)容的時(shí)候,可以用筆、直尺、書(shū)之類(lèi)的東西搭出一個(gè)圖形的框架,用以幫助提高空間想象力。對(duì)后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。

  第三,積累解決問(wèn)題的策略

  如將立體幾何問(wèn)題轉(zhuǎn)化為平面問(wèn)題,又如將求點(diǎn)到平面距離的問(wèn)題,或轉(zhuǎn)化為求直線到平面距離的問(wèn)題,再繼而轉(zhuǎn)化為求點(diǎn)到平面距離的問(wèn)題;或轉(zhuǎn)化為體積的問(wèn)題。一方面從已知到未知,另方面從未知到已知,尋求正反兩個(gè)方面的知識(shí)銜接點(diǎn)——一個(gè)固有的或確定的數(shù)學(xué)關(guān)系。

  高一立體幾何重點(diǎn)知識(shí)點(diǎn)以及學(xué)習(xí)方法二

  一、重視證明過(guò)程

  各類(lèi)考試中都有立體幾何論證的考察,論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,

  二、充分運(yùn)用“轉(zhuǎn)化”思想

  解立體幾何的問(wèn)題,要充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。通過(guò)轉(zhuǎn)化可以使問(wèn)題得以大大簡(jiǎn)化。

  三、平時(shí)注意規(guī)范訓(xùn)練

  在平時(shí)要養(yǎng)成良好的答題習(xí)慣,按課本上例題的答題格式、步驟、推理過(guò)程等一步步把題目演算出來(lái)。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因?yàn)樗⒅剡壿嬐评?。?ldquo;按步給分”的原則下,從平時(shí)的每一道題開(kāi)始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來(lái)很難答出來(lái)的題,一步步寫(xiě)下來(lái),思維也逐漸打開(kāi)了。

1994367