初二學生怎樣學習數(shù)學
初中數(shù)學是一個整體,初二的難點最多,那么初二的同學應該如何學好數(shù)學呢?同學們可以掌握哪些學習方法呢?下面是學習啦小編整理的初二學生學習數(shù)學的方法,僅供參考。
初二學生學習數(shù)學的方法一
(1)細心地發(fā)掘概念和公式
很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數(shù)式的概念(用字母或數(shù)字表示的式子是代數(shù)式)中,很多同學忽略了“單個字母或數(shù)字也是代數(shù)式”。二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯(lián)系。這樣就不能很好的將學到的知識點與解題聯(lián)系起來。三是,一部分同學不重視對數(shù)學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應用呢?
我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什么面目出現(xiàn),我們都能夠應用自如)。
(2)總結相似的類型題目
這個工作,不僅僅是老師的事,我們的同學要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到“任它千變萬化,我自巋然不動”。這個問題如果解決不好,在進入初二、初三以后,同學們會發(fā)現(xiàn),有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重復的工作,很多相似的題目反復做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數(shù)學的整體把握,弄的一團糟。
(3)收集自己的典型錯誤和不會的題目
同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然后彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現(xiàn)實情況是,同學們只追求做題的數(shù)量,草草的應付作業(yè)了事,而不追求解決出現(xiàn)的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發(fā)現(xiàn),過去你認為自己有很多的小毛病,現(xiàn)在發(fā)現(xiàn)原來就是這一個反復在出現(xiàn);過去你認為自己有很多問題都不懂,現(xiàn)在發(fā)現(xiàn)原來就這幾個關鍵點沒有解決。
(4)就不懂的問題,積極提問、討論
發(fā)現(xiàn)了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態(tài),學習任何東西都不可能學好。“閉門造車”只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到后面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣。直到無法趕上步伐。
討論是一種非常好的學習方法。一個比較難的題目,經(jīng)過與同學討論,你可能就會獲得很好的靈感,從對方那里學到好的方法和技巧。需要注意的是,討論的對象最好是與自己水平相當?shù)耐瑢W,這樣有利于大家相互學習。
初二學生學習數(shù)學的方法二
1、“方程”的思想
數(shù)學是研究事物的空間形式和數(shù)量關系的,初中最重要的數(shù)量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學習解一元一次方程,并總結出解一元一次方程的五個步驟。如果學會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數(shù)方程、對數(shù)方程、線性方程組、、參數(shù)方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學中的化學平衡式,現(xiàn)實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學問題,特別是現(xiàn)實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、“數(shù)形結合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學去研究了。初中數(shù)學的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結合”是一種趨勢,越學下去,“數(shù)”與 “形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今后的數(shù)學學習中,要重視“數(shù)形結合”的思維訓練,任何一道題,只要與“形”沾得上一點邊,就應該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結合”的好習慣。
3、“對應”的思想
“對應”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應一個抽象的數(shù) “2”;隨著學習的深入,我們還將“對應”擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用“對應”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點與實數(shù)之間的一一對應,直角坐標平面上的點與一對有序實數(shù)之間的一一對應,函數(shù)與其圖象之間的對應。“對應”的思想在今后的學習中將會發(fā)揮越來越大的作用。
初二學生怎樣學習數(shù)學相關文章: