2020數(shù)學學習計劃范文模板
數(shù)學(mathematics或maths,其英文來自希臘語,“máthēma”;經(jīng)常被縮寫為“math”),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。怎樣制定數(shù)學學習計劃呢?
一、制定切實可行的復習計劃,并認真執(zhí)行計劃。為使復習具有針對性,目的性和可行性,找準重點、難點,大綱(課程標準)是復習依據(jù),教材是復習的藍本。復習時要弄清學習中的難點、疑點及各知識點易出錯的原因,這樣做到復習有針對性,可收到事半功倍的效果。
二、分類整理、梳理,強化復習的系統(tǒng)性。復習的重要特點就是在系統(tǒng)原理的指導下,對所學知識進行系統(tǒng)的整理,使之形成一個較完整的知識體體系,這樣有利于知識的系統(tǒng)化和對其內(nèi)在聯(lián)系的把握,便于融合貫通。做到梳理——訓練——拓展,有序發(fā)展,真正提高復習的效果。
三、辨析比較,區(qū)分弄清易混概念。對于易混淆的概念,首先抓住意義方面的比較,再者是對易混概念的分析,這樣能全面把握概念的本質(zhì),避免不同概念的干擾,另外對易混的方法也應(yīng)進行比較,以明確解題方法。
四、一題多解,多題一解,提高解題的靈活性。有些題目,可以從不同的角度去分析,得到不同的解題方法。一題多解可以培養(yǎng)分析問題的能力。靈活解題的能力。不同的解題思路,列式不同,結(jié)果相同,收到殊途同歸的效果。同時也給其他同學以啟迪,開闊解題思路。有些應(yīng)用題,雖題目形式不同,但它們的解題方法是一樣的,故在復習時,要從不同的角度去思考,要對各類習題進行歸類,這樣才能使所所學知識融會貫通,提高解題靈活性。
五、有的放矢,挖掘創(chuàng)新。機械的重復,什么都講,什么都練是復習大忌,復習一定要有目的,有重點,要對所學知識歸納,概括。習題要具有開放性,創(chuàng)新性,使思維得到充分發(fā)展,要正確評估自己,自覺補缺查漏,面對復雜多變的題目,嚴密審題,弄清知識結(jié)構(gòu)關(guān)系和知識規(guī)律,發(fā)掘隱含條件,多思多找,得出自己的經(jīng)驗。