六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦 > 學習方法 > 高考真題 > 2023年新課標II卷數(shù)學高考真題及答案

2023年新課標II卷數(shù)學高考真題及答案

時間: 舒淇4599 分享

2023年新課標II卷數(shù)學高考真題及答案(山西卷)

高考結束后,考生們相互之間都會對答案、估分,參照高考試題和答案解析來認真分析自己的分數(shù),所以知道山西的高考各科試題和答案非常重要,下面小編為大家?guī)?023年新課標II卷數(shù)學高考真題及答案,希望對您有所幫助!

2023年新課標II卷數(shù)學高考真題

2023年新課標II卷數(shù)學高考真題及答案

2023年新課標II卷數(shù)學高考真題及答案

2023年新課標II卷數(shù)學高考真題及答案

2023年新課標II卷數(shù)學高考真題參考答案

2023年新課標II卷數(shù)學高考真題及答案

2023年新課標II卷數(shù)學高考真題及答案

2023年新課標II卷數(shù)學高考真題及答案

溫馨提示:查看更多更全高考試卷真題,可下載全文查看或微信搜索公眾號【5068教學資料】,關注后在對話框回復【高考真題】即可免費獲取。

如何正確的學習數(shù)學

1、觀察法。學習數(shù)學需要集中思想,觀察的時候一個不小心分神可能就會沒了思路,要學會觀察條件和結果之間的關系,還有題目中的數(shù)量關系,如果有圖形的話,還有觀察它的結構特點和特征,找出其規(guī)律。

2、假設法。有時候會遇到一些題目給出的條件太少,對解題根本沒有思路,也不知道從何下手,這時候就可以假設一些問題或者是好算的數(shù)量,要是條件太多,理不清思緒的時候,就可以把不同的條件假設相同,不要被固定的思維限制,靈活運用。

3、代數(shù)法。解一些數(shù)學題時,數(shù)量關系可能不完整,常常就會用一些字母去代替那個未知數(shù),然后根據(jù)等量關系列出方程式,這樣也能很快的解出答案。

提高數(shù)學成績有什么方法

培養(yǎng)孩子主動思考和提問的數(shù)學習慣

在學習中,定要培養(yǎng)孩子多動腦筋,勤于思考和提問。

學習數(shù)學不要滿足于會背誦概念、公式、定律等,要力求理解。主動思考和提問能讓孩子發(fā)現(xiàn)自己的不足,及時反饋,不僅能查漏補缺,對重難點的發(fā)掘和理解也有相當大的好處。

學習數(shù)學要勤于思考,積極進取,遇到不懂主動請教,主動和同學討論,學習成果豐厚,學習數(shù)學的興趣也會更濃厚。

高考數(shù)學的答題技巧

專題一、三角變換與三角函數(shù)的性質問題

1、解題路線圖

①不同角化同角

②降冪擴角

③化f(x)=Asin(ωx+φ)+h

④結合性質求解。

2、構建答題模板

①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sinx,y=cosx的性質確定條件。

③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質,寫出結果。

④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規(guī)范性。

專題二、解三角形問題

1、解題路線圖

(1)①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。

(2)①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2、構建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。

②定工具:即根據(jù)條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

③求結果。

④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。

專題三、數(shù)列的通項、求和問題

1、解題路線圖

①先求某一項,或者找到數(shù)列的關系式。

②求通項公式。

③求數(shù)列和通式。

2、構建答題模板

①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關系,即找數(shù)列的遞推公式。

②求通項:根據(jù)數(shù)列遞推公式轉化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據(jù)數(shù)列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規(guī)范寫出求和步驟。

⑤再反思:反思回顧,查看關鍵點、易錯點及解題規(guī)范。

專題四、利用空間向量求角問題

1、解題路線圖

①建立坐標系,并用坐標來表示向量。

②空間向量的坐標運算。

③用向量工具求空間的角和距離。

2、構建答題模板

①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

②寫坐標:建立空間直角坐標系,寫出特征點坐標。

③求向量:求直線的方向向量或平面的法向量。

④求夾角:計算向量的夾角。

⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問題

1、解題路線圖

①設方程。

②解系數(shù)。

③得結論。

2、構建答題模板

①提關系:從題設條件中提取不等關系式。

②找函數(shù):用一個變量表示目標變量,代入不等關系式。

③得范圍:通過求解含目標變量的不等式,得所求參數(shù)的范圍。

④再回顧:注意目標變量的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問題

1、解題路線圖

①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

②將上面的假設代入已知條件求解。

③得出結論。

2、構建答題模板

①先假定:假設結論成立。

②再推理:以假設結論成立為條件,進行推理求解。

③下結論:若推出合理結果,經(jīng)驗證成立則肯。定假設;若推出矛盾則否定假設。

④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。

專題七、離散型隨機變量的均值與方差

1、解題路線圖

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數(shù)學期望。

2、構建答題模板

①定元:根據(jù)已知條件確定離散型隨機變量的取值。

②定性:明確每個隨機變量取值所對應的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變量取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據(jù)均值、方差公式求解其值。

專題八、函數(shù)的單調性、極值、最值問題

1、解題路線圖

(1)①先對函數(shù)求導;②計算出某一點的斜率;③得出切線方程。

(2)①先對函數(shù)求導;②談論導數(shù)的正負性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調區(qū)間和極值。

2、構建答題模板

①求導數(shù):求f(x)的導數(shù)f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區(qū)間,并列出表格。

④得結論:從表格觀察f(x)的單調性、極值、最值等。

⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規(guī)范性。

2151671