上海高考數(shù)學試題考卷
2024年上海高考數(shù)學試題考卷公布了,大家想不想知道上海高考數(shù)學都考了哪些內(nèi)容呢?下面給大家分享一些關(guān)于2024年上海高考數(shù)學試題考卷公布,希望能夠?qū)Υ蠹业男枰獛砹λ芗暗挠行椭?/p>
2024年上海高考數(shù)學試題考卷公布
上海高考數(shù)學試卷解答技巧
①缺步解答:如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等于失敗。特別是那些解題層次明顯的題目,或者是已經(jīng)程序化了的方法,每一步得分點的演算都可以得分,最后結(jié)論雖然未得出,但分數(shù)卻已過半,這叫“大題拿小分”。
②跳步答題:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時,我們可以先承認中間結(jié)論,往后推,看能否得到結(jié)論。如果不能,說明這個途徑不對,立即改變方向;如果能得出預期結(jié)論,就回過頭來,集中力量攻克這一“卡殼處”。由于考試時間的限制,“卡殼處”的攻克如果來不及了,就可以把前面的寫下來,再寫出“證實某步之后,繼續(xù)有……”一直做到底。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面。若題目有兩問,第一問想不出來,可把第一問作為“已知”,先做第二問,這也是跳步解答。
③退步解答:“以退求進”是一個重要的解題策略。如果你不能解決所提出的問題,那么,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結(jié)論退到較弱的結(jié)論??傊说揭粋€你能夠解決的問題。為了不產(chǎn)生“以偏概全”的誤解,應開門見山寫上“本題分幾種情況”。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發(fā)。
上海高考數(shù)學函數(shù)與方程思想考察
函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學語言將問題轉(zhuǎn)化為方程或不等式模型去解決問題。同學們在解題時可利用轉(zhuǎn)化思想進行函數(shù)與方程間的相互轉(zhuǎn)化。