高考數(shù)學(xué)上海卷原題試卷
數(shù)學(xué)高考試卷大家一定要認(rèn)真掌握,把高考的知識(shí)點(diǎn)熟練掌握,下面給大家分享一些關(guān)于2024高考數(shù)學(xué)上海卷原題試卷(必看),希望能夠?qū)Υ蠹业男枰獛砹λ芗暗挠行椭?/p>
2024高考數(shù)學(xué)上海卷原題試卷(必看)
上海高考數(shù)學(xué)試卷常見失分因素
①對(duì)題意缺乏正確的理解,應(yīng)做到慢審題快做題;
②公式記憶不牢,考前一定要熟悉公式、定理、性質(zhì)等;
③思維不嚴(yán)謹(jǐn),不要忽視易錯(cuò)點(diǎn);
④解題步驟不規(guī)范,一定要按課本要求,否則會(huì)因不規(guī)范答題而失分,避免“對(duì)而不全”,如解概率題時(shí),要給出適當(dāng)?shù)奈淖终f明,不能只列幾個(gè)式子或單純的結(jié)論,表達(dá)不規(guī)范、字跡不工整等非智力因素會(huì)影響閱卷老師的“感情分”;
⑤計(jì)算能力差導(dǎo)致失分多,會(huì)做的試題一定不能放過,不能一味求快,例如平面解析幾何中的圓錐曲線問題就要求較強(qiáng)的運(yùn)算能力;
⑥輕易放棄試題,難題不會(huì)做時(shí),可分解成小問題,分步解決,如最起碼能將文字語(yǔ)言翻譯成符號(hào)語(yǔ)言、設(shè)應(yīng)用題未知數(shù)、設(shè)軌跡的動(dòng)點(diǎn)坐標(biāo)等,都能拿分。也許隨著這些小步驟的羅列,還能悟出解題的靈感。
上海高考數(shù)學(xué)試卷解答參考
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想;
立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
絕對(duì)值問題優(yōu)先選擇去絕對(duì)值,去絕對(duì)值優(yōu)先選擇使用定義。