記憶數(shù)學(xué)公式的有效方法
數(shù)學(xué)公式基本的是要理解,在理解的基礎(chǔ)上記憶,借助一些記憶公式的常用方法和技巧,就更是事半功倍了。下面由學(xué)習(xí)啦小編給你帶來關(guān)于記憶數(shù)學(xué)公式的有效方法,希望對你有幫助!
記憶數(shù)學(xué)公式的有效方法
1. 用語言描述公式
比如我們前面描述向量的數(shù)量積公式“橫坐標(biāo)之積與縱坐標(biāo)之積的和”,
再比如同底數(shù)冪相乘的公式,可直接描述為“底數(shù)不變,指數(shù)相加”,冪的乘方公式,可直接描述為“底數(shù)不變,指數(shù)相乘”。
可能這些還不足以簡潔神奇,那么“奇變偶不變,符號看象限”,這聊聊十字,就概括了六組幾十個誘導(dǎo)公式,簡直是高中數(shù)學(xué)中的“神訣”,朗朗上口,輕松記憶,很多高中生畢業(yè)后,可能數(shù)學(xué)知識忘了,但這句口訣,終身難忘。
2. 抓住公式特征
比如兩角和的余弦公式
公式特征相當(dāng)明顯,即兩個余弦乘積減去兩個正弦乘積,用諧音“科科減賽賽”或者“哭哭減笑笑”就很好記
再比如,一個不常用但一旦用了就很方便的公式
公式特征是“sin上面1-cos,或者sin下面1+cos”,根據(jù)這個特征,可諧音記作“山上一劍客,山下一俠客”,生動好記,還有些趣味。當(dāng)然這些,都需要我們自己去琢磨這些公式的特征
3. 運(yùn)用類比和比較記憶
比如上面兩角和的余弦公式記住了,那么兩角差的余弦公式可以類比記憶,
“哭哭加笑笑”,同時還可類比記憶兩角和與差的正弦公式、正切公式,諸如此類
再比如,學(xué)過等差數(shù)列后,你熟悉了等差數(shù)列的性質(zhì),可以根據(jù)等比數(shù)列的定義,去理解記憶等比數(shù)列的性質(zhì),例如,等差數(shù)列的下標(biāo)和如果一樣,那么它們的和相等,到了等比數(shù)列這,就是它們的積相等了;
再如,等差數(shù)列前n項(xiàng)和有一個公式是n乘以中間項(xiàng),那么類比到等比數(shù)列,可得相似結(jié)論:等比數(shù)列前n項(xiàng)積,等于中間項(xiàng)的n次方。諸如此類,類比在數(shù)列的學(xué)習(xí)中,是一種特別重要的思想
常用誘導(dǎo)公式記憶口訣
對于π/2*k ±α(k∈Z)的三角函數(shù)值,
?、佼?dāng)k是偶數(shù)時,得到α的同名函數(shù)值,即函數(shù)名不改變;
?、诋?dāng)k是奇數(shù)時,得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然后在前面加上把α看成銳角時原函數(shù)值的符號。
(符號看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4為偶數(shù),所以取sinα。
當(dāng)α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為“-”。
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數(shù)值的符號可記憶
水平誘導(dǎo)名不變;符號看象限。
各種三角函數(shù)在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.
這十二字口訣的意思就是說:
第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;
第二象限內(nèi)只有正弦是“+”,其余全部是“-”;
第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;
第四象限內(nèi)只有余弦是“+”,其余全部是“-”.
上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦
還有一種按照函數(shù)類型分象限定正負(fù):
函數(shù)類型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
正切 ...........+............—............+............—........
余切 ...........+............—............+............—........
同角三角函數(shù)基本關(guān)系
同角三角函數(shù)的基本關(guān)系式
倒數(shù)關(guān)系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數(shù)關(guān)系:對角線上兩個函數(shù)互為倒數(shù);
(2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個頂點(diǎn)上函數(shù)值的乘積。
(主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。
(3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
兩角和差公式
兩角和與差的三角函數(shù)公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)