數(shù)學(xué)知識的快速記憶方法
數(shù)學(xué)中的記憶能力是掌握基礎(chǔ)知識,形成基本能力的基礎(chǔ)。許多數(shù)學(xué)知識,不僅需要我們理解,而且更需要我們記住它。下面是由學(xué)習(xí)啦小編給大家?guī)黻P(guān)于數(shù)學(xué)知識的快速記憶方法,希望對大家有幫助!
數(shù)學(xué)知識的快速記憶方法
1、歸類記憶法
就是根據(jù)識記材料的性質(zhì)、特征及其內(nèi)在聯(lián)系,進(jìn)行歸納分類,以便幫助學(xué)生記憶大量的知識。比如,學(xué)完計量單位后,可以把學(xué)過的所有內(nèi)容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜復(fù)雜的事物系統(tǒng)化、條理化,易于記憶。
2、歌訣記憶法
就是把要記憶的數(shù)學(xué)知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準(zhǔn)頂點(diǎn),零線對著一邊,另一邊看度數(shù)。”再如,小數(shù)點(diǎn)位置移動引起數(shù)的大小變化,“小數(shù)點(diǎn)請你跟我走,走路先要找準(zhǔn)‘左’和‘右’;橫撇帶口是個 you,擴(kuò)大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤。”采用這種方法來記憶,學(xué)生不僅喜歡記,而且記得牢。
3、規(guī)律記憶法
即根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來進(jìn)行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法。化法和聚法是互逆聯(lián)系,即高級單位的數(shù)值 ×進(jìn)率=低級單位的數(shù)值,低級單位的數(shù)值÷進(jìn)率=高級單位的數(shù)值。掌握了這兩條規(guī)律,化聚問題就迎刃而解了。規(guī)律記憶,需要學(xué)生開動腦筋對所學(xué)的有關(guān)材料進(jìn)行加工和組織,因而記憶牢固。
4、列表記憶法
就是把某些容易混淆的識記材料列成表格,達(dá)到記憶之目的。這種方法具有明顯性、直觀性和對比性。比如,要識記質(zhì)數(shù)、質(zhì)因數(shù)、互質(zhì)數(shù)這三個概念的區(qū)別,就可列成表來幫助學(xué)生記憶。
5、重點(diǎn)記憶法
隨著年齡的增長,所學(xué)的數(shù)學(xué)知識也越來越多,學(xué)生要想全面記住,既浪費(fèi)時間且記憶效果不佳。因此,要讓學(xué)生學(xué)會記憶重點(diǎn)內(nèi)容,學(xué)生在記住了重點(diǎn)內(nèi)容的基礎(chǔ)上,再通過推導(dǎo)、聯(lián)想等方法便可記住其他內(nèi)容了。比如,學(xué)習(xí)常見的數(shù)量關(guān)系:工作效率×工作時間=工作量。工作量÷工作效率=工作時間;工作量+工作時間=工作效率。這三者關(guān)系中只要記住了第一個數(shù)量關(guān)系,后面兩個數(shù)量關(guān)系就可根據(jù)乘法和除法的關(guān)系推導(dǎo)出來。這樣去記,減輕了學(xué)生記憶的負(fù)擔(dān),提高了記憶的效率。
有趣的數(shù)學(xué)知識記憶法
自變量的取值范圍
分式分母不為零,
偶次根下負(fù)不行;
零次冪底數(shù)不為零,
整式、奇次根全能行。
函數(shù)圖象的移動規(guī)律
若把一次函數(shù)解析式寫成y=k(x+0)+b,二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則可用下面的口訣:
左右平移在括號,
上下平移在末稍,
左正右負(fù)須牢記,
上正下負(fù)錯不了。
二次函數(shù)的圖象與性質(zhì)的口訣
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);
開口、大小由a斷,c與y軸來相見,
b的符號較特別,符號與a相關(guān)聯(lián);
頂點(diǎn)位置先找見,y軸作為參考線,
左同右異中為0,牢記心中莫混亂;
頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。
巧記三角函數(shù)定義
初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是直角三角形的邊的比值,可以把兩個字用/隔開,再用下面的.
一句話記定義:
一位不高明的廚子教徒弟殺魚,說了這么一句話:“正對魚磷(余鄰)直刀切。
”正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊.
平行四邊形的判定
要證平行四邊形,兩個條件才能行。
一證對邊都相等,或證對邊都平行。
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”。
函數(shù)學(xué)習(xí)口決
正比例函數(shù)是直線,圖象一定過原點(diǎn),
k的正負(fù)是關(guān)鍵,決定直線的象限,
負(fù)k經(jīng)過二四限,x增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經(jīng)過三個限,
兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個點(diǎn),
正k落在一三限,x增大y在減,
圖象上面任意點(diǎn),矩形面積都不變,
對稱軸是角分線,x、y的順序可交換。
二次函數(shù)拋物線,選定需要三個點(diǎn),
a的正負(fù)開口判,c的大小y軸看,
△的符號最簡便,x軸上數(shù)交點(diǎn),
a、b同號軸左邊,拋物線平移a不變,
頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,
配方法作用最關(guān)鍵。
猜你喜歡: