中考數(shù)學(xué)一模模擬試卷帶答案
做中考數(shù)學(xué)一模模擬試卷有助于同學(xué)們對數(shù)學(xué)知識的查漏補缺。接下來,學(xué)習(xí)啦小編為你分享中考數(shù)學(xué)一模模擬試卷帶答案,希望對你有幫助。
中考數(shù)學(xué)一模模擬試卷A級
1.(2013年福建漳州)用下列一種多邊形不能鋪滿地面的是( )
A.正方形 B.正十邊形 C.正六邊形 D.等邊三角形
2.(2013年湖南長沙)下列多邊形中,內(nèi)角和與外角和相等的是( )
A.四邊形 B.五邊形 C.六邊形 D.八邊形
3.(2013年海南)如圖439,在▱ABCD中,AC與BD相交于點O,則下列結(jié)論不一定成立的是( )
A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD
圖439 圖4310 圖4311 圖4312 圖4313
4.(2013年黑龍江哈爾濱)如圖4310,在▱ABCD中,AD=2AB,CE平分∠BCD,并交AD邊于點E,且AE=3,則AB的長為( )
A.4 B.3 C.52 D.2
5.若以A(-0.5,0),B(2,0),C(0,1)三點為頂點畫平行四邊形,則第四個頂點不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.(2013年山東煙臺)如圖4311,▱ABCD的周長為36,對角線AC,BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為____________.
7.(2013年江西)如圖4312,▱ABCD與▱DCFE的周長相等,且∠BAD=60°,∠F=110°,則∠DAE的度數(shù)為__________.
8.(2013年福建泉州)如圖4313,順次連接四邊形 ABCD四邊的中點E,F(xiàn),G,H,則四邊形 EFGH 的形狀一定是__________.
9.(2012年四川德陽)已知一個多邊形的內(nèi)角和是外角和的32,則這個多邊形的邊數(shù)是________.
10.(2013年四川南充)如圖4314,在平行四邊形ABCD中,對角線AC,BD交于點O,經(jīng)過點O的直線交AB于E,交CD于F.求證:OE=OF.
11.(2013年福建漳州)如圖4315,在▱ABCD中,E,F(xiàn)是對角線BD上兩點,且BE=DF.
(1)圖中共有______對全等三角形;
(2)請寫出其中一對全等三角形:________≌__________,并加以證明.
中考數(shù)學(xué)一模模擬試卷B級 中等題
12.(2013年廣東廣州)如圖4316,已知四邊形ABCD是平行四邊形,把△ABD沿對角線BD翻折180°得到△A′BD.
(1)利用尺規(guī)作出△A′BD(要求保留作圖痕跡,不寫作法);
(2)設(shè)DA′與BC交于點E,求證:△BA′E≌△DCE.
13.(2012年遼寧沈陽)如圖4317,在▱ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
中考數(shù)學(xué)一模模擬試卷C級 拔尖題
14.(1)如圖4318(1),▱ABCD的對角線AC,BD交于點O,直線EF過點O,分別交AD,BC于點E,F(xiàn).求證:AE=CF.
(2)如圖4318(2),將▱ABCD(紙片)沿過對角線交點O的直線EF折疊,點A落在點A1處,點B落在點B1處,設(shè)FB1交CD于點G,A1B1分別交CD,DE于點H,I.求證:EI=FG.
中考數(shù)學(xué)一模模擬試卷答案
1.B 2.A 3.D 4.B 5.C 6.15 7.25°
8.平行四邊形 9.5
10.證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,AB∥CD.∴∠OAE=∠OCF.
∵∠AOE=∠COF,∴△OAE≌△OCF(ASA).
∴OE=OF.
11.解:(1)3
(2)①△ABE≌△CDF.
證明:在▱ABCD中,AB∥CD,AB=CD,
∴∠ABE=∠CDF.
又∵BE=DF,∴△ABE≌△CDF(SAS).
②△ADE≌△CBF.
證明:在▱ABCD中,AD∥BC,AD=BC,
∴∠ADE=∠CBF,∵BE=DF,
∴BD-BE=BD-DF,即DE=BF.
∴△ADE≌△CBF(SAS).
?、邸鰽BD≌△CDB.
證明:在▱ABCD中,AB=CD,AD=BC,
又∵BD=DB,∴△ABD≌△CDB(SSS).
(任選其中一對進行證明即可)
12.解:(1)略
(2)∵四邊形ABCD是平行四邊形,
∴AB=CD,∠BAD=∠C,
由折疊性質(zhì),可得∠A′=∠A,A′B=AB,
設(shè)A′D與BC交于點E,∴∠A′=∠C,A′B=CD,
在△BA′E和△DCE中,
∠A′=∠C,∠BEA′=∠DEC,BA′=DC,
∴△BA′E≌△DCE(AAS).
13.證明:(1)∵四邊形ABCD是平行四邊形,
∴∠DAB=∠BCD.∴∠EAM=∠FCN.
又∵AD∥BC,∴∠E=∠F.
又∵AE=CF,
∴△AEM≌△CFN(ASA).
(2)∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD.
又由(1),得AM=CN,∴BM=DN.
又∵BM∥DN∴四邊形BMDN是平行四邊形.
14.證明:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,OA=OC.∴∠1=∠2.
又∵∠3=∠4,
∴△AOE≌△COF(ASA).∴AE=CF.
(2)∵四邊形ABCD是平行四邊形,
∴∠A=∠C,∠B=∠D.
由(1),得AE=CF.
由折疊的性質(zhì),得AE=A1E,∠A1=∠A,∠B1=∠B,
∴A1E=CF,∠A1=∠C,∠B1=∠D.
又∵∠1=∠2,∴∠3=∠4.
∵∠5=∠3,∠4=∠6,∴∠5=∠6.
在△A1IE與△CGF中,
∠A1=∠C,∠5=∠6,A1E=CF,
∴△A1IE≌△CGF(AAS).∴EI=FG.
猜你感興趣: