2017年鄂州中考數(shù)學(xué)模擬試題解析
多做中考數(shù)學(xué)模擬真題可以提升數(shù)學(xué)能力,學(xué)生在準(zhǔn)備考試的過(guò)程中掌握中考數(shù)學(xué)模擬真題自然能考得好,以下是小編精心整理的2017年鄂州中考數(shù)學(xué)模擬真題解析,希望能幫到大家!
2017年鄂州中考數(shù)學(xué)模擬真題
一、選擇題
1. 的倒數(shù)是( )
A. B.8 C.﹣8 D.﹣1
2.所示的幾何圖形的左視圖是( )
A. B. C. D.
3.下列運(yùn)算正確的是( )
A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2 D.a2•4a4=4a8
4.,EF∥BC,AC平分∠BAF,∠B=80°,∠C=( )度.
A.40 B.45 C.50 D.55
5.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(1, ),M為坐標(biāo)軸上一點(diǎn),且使得△MOA為等腰三角形,則滿足條件的點(diǎn)M的個(gè)數(shù)為( )
A.4 B.5 C.6 D.8
6.,⊙O的外切正六邊形ABCDEF的邊長(zhǎng)為2,則圖中陰影部分的面積為( )
A. B. C.2 D.
7.若關(guān)于x的一元一次不等式組 有解,則m的取值范圍為( )
A. B.m≤ C. D.m≤
8.把直線y=﹣x+3向上平移m個(gè)單位后,與直線y=2x+4的交點(diǎn)在第一象限,則m的取值范圍是( )
A.11 D.m<4
9.三角形的兩邊長(zhǎng)分別為3和6,第三邊的長(zhǎng)是方程x2﹣6x+8=0的一個(gè)根,則這個(gè)三角形的周長(zhǎng)是( )
A.9 B.11 C.13 D.11或13
10.已知二次函數(shù)y=ax2+bx+1(a<0)的圖象過(guò)點(diǎn)(1,0)和(x1,0),且﹣2b﹣1;④a<﹣ ;⑤2a
A.①③ B.①②③ C.①②③⑤ D.①③④⑤
二、填空題
11.分解因式:x2y﹣2xy+y= .
12.,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長(zhǎng)為16cm,則四邊形ABFD的周長(zhǎng)為 .
13.等腰△ABC,頂角∠A=40°,AD⊥BC,BC=8,求AB= (結(jié)果精確到0.1)
14.,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點(diǎn)F在x軸的正半軸上,點(diǎn)C在邊DE上,反比例函數(shù)y= (k≠0,x>0)的圖象過(guò)點(diǎn)B,E.若AB=2,則k的值為 .
15.四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過(guò)點(diǎn)D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動(dòng)點(diǎn).當(dāng)△BCP的周長(zhǎng)最小時(shí),DP的長(zhǎng)為 .
三、解答題
16.計(jì)算:( )﹣2﹣6sin30°﹣( )0+ +| ﹣ |
17.化簡(jiǎn): ,然后請(qǐng)自選一個(gè)你喜歡的x值,再求原式的值.
18.,線段AB繞某一點(diǎn)逆時(shí)針旋轉(zhuǎn)一定的角度得到線段A'B',利用尺規(guī)確定旋轉(zhuǎn)中心.(不寫作法,保留作圖痕跡)
19.蘭州市某中學(xué)對(duì)本校初中學(xué)生完成家庭作業(yè)的時(shí)間做了總量控制,規(guī)定每天完成家庭作業(yè)的時(shí)間不超過(guò)1.5小時(shí),該校數(shù)學(xué)課外興趣小組對(duì)本校初中學(xué)生回家完成作業(yè)的時(shí)間做了一次隨機(jī)抽樣調(diào)查,并繪制出頻數(shù)分布表和頻數(shù)分布直方圖()的一部分.
時(shí)間(小時(shí)) 頻數(shù)(人數(shù)) 頻率
0≤t<0.5 4 0.1
0.5≤t<1 a 0.3
1≤t<1.5 10 0.25
1.5≤t<2 8 b
2≤t<2.5 6 0.15
合計(jì) 1
(1)在圖表中,a= ,b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)請(qǐng)估計(jì)該校1400名初中學(xué)生中,約有多少學(xué)生在1.5小時(shí)以內(nèi)完成了家庭作業(yè).
20.,在正方形ABCD和正方形ECGF中,連接BE,DG.求證:BE=DG.
21.,一枚運(yùn)載火箭從地面O處發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從地面C處的雷達(dá)站測(cè)得AC的距離是6km,仰角是43°,1s后,火箭到達(dá)B點(diǎn),此時(shí)測(cè)得仰角為45.5°,這枚火箭從點(diǎn)A到點(diǎn)B的平均速度是多少?(結(jié)果精確到0.01)
22.我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元.
經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn):該款工藝品每天的銷售量y(件)與售價(jià)x(元)之間存在著如下表所示的一次函數(shù)關(guān)系.
售價(jià)x(元) … 70 90 …
銷售量y(件) … 3000 1000 …
(利潤(rùn)=(售價(jià)﹣成本價(jià))×銷售量)
(1)求銷售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)你認(rèn)為如何定價(jià)才能使工藝品廠每天獲得的利潤(rùn)為40000元?
23.,拋物線y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C(0,3),頂點(diǎn)D的坐標(biāo)為(﹣1,4).
(1)求拋物線的解析式;
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=2 DQ,請(qǐng)直接寫出點(diǎn)F的坐標(biāo).
24.,在△ABC中,∠A=90°,BC=10,△ABC的面積為25,點(diǎn)D為AB邊上的任意一點(diǎn)(D不與A、B重合),過(guò)點(diǎn)D作DE∥BC,交AC于點(diǎn)E.設(shè)DE=x,以DE為折線將△ADE翻折(使△ADE落在四邊形DBCE所在的平面內(nèi)),所得的△A'DE與梯形DBCE重疊部分的面積記為y.
(1)用x表示△ADE的面積;
(2)求出0
(3)求出5
(4)當(dāng)x取何值時(shí),y的值最大,最大值是多少?
2017年鄂州中考數(shù)學(xué)模擬真題解析
一、選擇題
1. 的倒數(shù)是( )
A. B.8 C.﹣8 D.﹣1
【考點(diǎn)】倒數(shù).
【分析】依據(jù)倒數(shù)的定義解答即可.
【解答】解: 的倒數(shù)是﹣8.
故選:C.
2.所示的幾何圖形的左視圖是( )
A. B. C. D.
【考點(diǎn)】簡(jiǎn)單組合體的三視圖.
【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.
【解答】解:從左邊看上下兩個(gè)矩形,兩矩形的公共邊是虛線,
故選:B.
3.下列運(yùn)算正確的是( )
A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2 D.a2•4a4=4a8
【考點(diǎn)】單項(xiàng)式乘單項(xiàng)式;合并同類項(xiàng);冪的乘方與積的乘方.
【分析】A、原式合并得到結(jié)果,即可做出判斷;
B、原式利用積的乘方運(yùn)算法則計(jì)算得到結(jié)果,即可做出判斷;
C、原式合并得到結(jié)果,即可做出判斷;
D、原式利用單項(xiàng)式乘單項(xiàng)式運(yùn)算法則計(jì)算得到結(jié)果,即可做出判斷.
【解答】解:A、4a2﹣4a2=0,故選項(xiàng)錯(cuò)誤;
B、(﹣a3b)2=a6b2,故選項(xiàng)正確;
C、a+a=2a,故選項(xiàng)錯(cuò)誤;
D、a2•4a4=4a6,故選項(xiàng)錯(cuò)誤.
故選:B.
4.,EF∥BC,AC平分∠BAF,∠B=80°,∠C=( )度.
A.40 B.45 C.50 D.55
【考點(diǎn)】平行線的性質(zhì).
【分析】先根據(jù)平行線的性質(zhì)得出∠BAF的度數(shù),再由AC平分∠BAF求出∠CAF的度數(shù),根據(jù)平行線的性質(zhì)即可得出結(jié)論.
【解答】解:∵EF∥BC,
∴∠BAF=180°﹣∠B=100°.
∵AC平分∠BAF,
∴∠CAF= ∠BAF=50°,
∵EF∥BC,
∴∠C=∠CAF=50°.
故選C.
5.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(1, ),M為坐標(biāo)軸上一點(diǎn),且使得△MOA為等腰三角形,則滿足條件的點(diǎn)M的個(gè)數(shù)為( )
A.4 B.5 C.6 D.8
【考點(diǎn)】等腰三角形的判定;坐標(biāo)與圖形性質(zhì).
【分析】分別以O(shè)、A為圓心,以O(shè)A長(zhǎng)為半徑作圓,與坐標(biāo)軸交點(diǎn)即為所求點(diǎn)M,再作線段OA的垂直平分線,與坐標(biāo)軸的交點(diǎn)也是所求的點(diǎn)M,作出圖形,利用數(shù)形結(jié)合求解即可.
【解答】解:,滿足條件的點(diǎn)M的個(gè)數(shù)為6.
故選C.
分別為:(﹣2,0),(2,0),(0,2 ),(0,2),(0,﹣2),(0, ).
6.,⊙O的外切正六邊形ABCDEF的邊長(zhǎng)為2,則圖中陰影部分的面積為( )
A. B. C.2 D.
【考點(diǎn)】正多邊形和圓;扇形面積的計(jì)算.
【分析】由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設(shè)點(diǎn)G為AB與⊙O的切點(diǎn),連接OG,則OG⊥AB,OG=OA•sin60°,再根據(jù)S陰影=S△OAB﹣S扇形OMN,進(jìn)而可得出結(jié)論.
【解答】解:∵六邊形ABCDEF是正六邊形,
∴∠AOB=60°,
∴△OAB是等邊三角形,OA=OB=AB=2,
設(shè)點(diǎn)G為AB與⊙O的切點(diǎn),連接OG,則OG⊥AB,
∴OG=OA•sin60°=2× = ,
∴S陰影=S△OAB﹣S扇形OMN= ×2× ﹣ = ﹣ .
故選A.
7.若關(guān)于x的一元一次不等式組 有解,則m的取值范圍為( )
A. B.m≤ C. D.m≤
【考點(diǎn)】解一元一次不等式組.
【分析】先求出兩個(gè)不等式的解集,再根據(jù)有解列出不等式組求解即可.
【解答】解: ,
解不等式①得,x<2m,
解不等式②得,x>2﹣m,
∵不等式組有解,
∴2m>2﹣m,
∴m> .
故選C.
8.把直線y=﹣x+3向上平移m個(gè)單位后,與直線y=2x+4的交點(diǎn)在第一象限,則m的取值范圍是( )
A.11 D.m<4
【考點(diǎn)】一次函數(shù)圖象與幾何變換.
【分析】直線y=﹣x+3向上平移m個(gè)單位后可得:y=﹣x+3+m,求出直線y=﹣x+3+m與直線y=2x+4的交點(diǎn),再由此點(diǎn)在第一象限可得出m的取值范圍.
【解答】解:直線y=﹣x+3向上平移m個(gè)單位后可得:y=﹣x+3+m,
聯(lián)立兩直線解析式得: ,
解得: ,
即交點(diǎn)坐標(biāo)為( , ),
∵交點(diǎn)在第一象限,
∴ ,
解得:m>1.
故選C.
9.三角形的兩邊長(zhǎng)分別為3和6,第三邊的長(zhǎng)是方程x2﹣6x+8=0的一個(gè)根,則這個(gè)三角形的周長(zhǎng)是( )
A.9 B.11 C.13 D.11或13
【考點(diǎn)】解一元二次方程﹣因式分解法;三角形三邊關(guān)系.
【分析】易得方程的兩根,那么根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形周長(zhǎng)即可.
【解答】解:解方程x2﹣6x+8=0得,
x=2或4,
則第三邊長(zhǎng)為2或4.
邊長(zhǎng)為2,3,6不能構(gòu)成三角形;
而3,4,6能構(gòu)成三角形,
所以三角形的周長(zhǎng)為3+4+6=13,
故選:C.
10.已知二次函數(shù)y=ax2+bx+1(a<0)的圖象過(guò)點(diǎn)(1,0)和(x1,0),且﹣2b﹣1;④a<﹣ ;⑤2a
A.①③ B.①②③ C.①②③⑤ D.①③④⑤
【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系.
【分析】求得與y軸的交點(diǎn)坐標(biāo),根據(jù)與坐標(biāo)軸的交點(diǎn)判斷出a<0,根據(jù)與x軸的交點(diǎn)判定﹣ <﹣ <0,從而得出a、b的關(guān)系,把(﹣1,0),(﹣2,0)代入函數(shù)解析式求出a、b、c的關(guān)系式,然后對(duì)各小題分析判斷即可得解.
【解答】解:∵拋物線與x軸的交點(diǎn)為(1,0)和(x1,0),﹣2
∴a<0,
∵﹣2
∴﹣ <﹣ <0,
∴b<0,b>a,故①正確,②錯(cuò)誤;
∵當(dāng)x=﹣1時(shí),y>0,
∴a﹣b+1>0,
∴a>b﹣1故③正確;
∵由一元二次方程根與系數(shù)的關(guān)系知x1•x2= ,
∴x1= ,
∵﹣2
∴﹣2< <﹣1,
∴a<﹣ ,故④正確;
∵當(dāng)x=﹣2時(shí),y<0,
∴4a﹣2b+1<0,
∴2a
綜上所述,正確的結(jié)論有①③④⑤,
故選:D.
二、填空題
11.分解因式:x2y﹣2xy+y= y(x﹣1)2 .
【考點(diǎn)】提公因式法與公式法的綜合運(yùn)用.
【分析】先提取公因式y(tǒng),再根據(jù)完全平方公式進(jìn)行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.
【解答】解:x2y﹣2xy+y,
=y(x2﹣2x+1),
=y(x﹣1)2.
故答案為:y(x﹣1)2.
12.,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長(zhǎng)為16cm,則四邊形ABFD的周長(zhǎng)為 20cm .
【考點(diǎn)】平移的性質(zhì).
【分析】先根據(jù)平移的性質(zhì)得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,則四邊形ABFD的周長(zhǎng)=AB+BC+CF+DF+AD,然后利用整體代入的方法計(jì)算即可.
【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,
∴CF=AD=2cm,AC=DF,
∵△ABC的周長(zhǎng)為16cm,
∴AB+BC+AC=16cm,
∴四邊形ABFD的周長(zhǎng)=AB+BC+CF+DF+AD
=AB+BC+AC+CF+AD
=16cm+2cm+2cm
=20cm.
故答案為:20cm.
13.等腰△ABC,頂角∠A=40°,AD⊥BC,BC=8,求AB= 12.3 (結(jié)果精確到0.1)
【考點(diǎn)】等腰三角形的性質(zhì);近似數(shù)和有效數(shù)字.
【分析】根據(jù)等腰三角形的性質(zhì)得到BD=CD= BC=4, ∠BAC=20°,解直角三角形即可得到結(jié)論.
【解答】解:,∵AB=AC,∠BAC=40°,AD⊥BC,BC=8,
∴BD=CD= BC=4, ∠BAC=20°,
在Rt△ABD中,sin∠BAD= ,
即ain20°= ≈0.342,
∴AB= ≈12.3,
故答案為:12.3.
14.,在平面直角坐標(biāo)系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點(diǎn)F在x軸的正半軸上,點(diǎn)C在邊DE上,反比例函數(shù)y= (k≠0,x>0)的圖象過(guò)點(diǎn)B,E.若AB=2,則k的值為 6+2 .
【考點(diǎn)】反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
【分析】設(shè)E(x,x),則B(2,x+2),根據(jù)反比例函數(shù)系數(shù)的幾何意義得出x2=2(x+2),求得E的坐標(biāo),從而求得k的值.
【解答】解:設(shè)E(x,x),
∴B(2,x+2),
∵反比例函數(shù)y= (k≠0,x>0)的圖象過(guò)點(diǎn)B、E.
∴x2=2(x+2),
解得x1=1+ ,x2=1﹣ (舍去),
∴k=x2=6+2 ,
故答案為6+2 .
15.四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過(guò)點(diǎn)D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動(dòng)點(diǎn).當(dāng)△BCP的周長(zhǎng)最小時(shí),DP的長(zhǎng)為 12.5 .
【考點(diǎn)】軸對(duì)稱﹣?zhàn)疃搪肪€問題.
【分析】先根據(jù)△ABC是直角三角形可求出AC的長(zhǎng),再根據(jù)AD=DC,DF⊥AC可求出AF=CF= AC,故點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)是A,故E點(diǎn)與P點(diǎn)重合時(shí)△BCP的周長(zhǎng)最小,再根據(jù)DE⊥AC,BC⊥AC可知,DE∥BC,由相似三角形的判定定理可知△AEF∽△ABC,利用相似三角形的對(duì)應(yīng)邊成比例可得出AE的長(zhǎng),同理,利用△AED∽△CBA即可求出DE的長(zhǎng).
【解答】解:∵∠ACB=90°,AB=15,BC=9,
>>>下一頁(yè)更多“2017年鄂州中考數(shù)學(xué)模擬真題解析”