六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

2017年廣東省茂名市中考數(shù)學(xué)模擬試卷(2)

時間: 漫柔41 分享

  ∵AE= AB,

  ∴BE=PE=2AE,

  ∴∠APE=30°,

  ∴∠PEF=∠BEF=60°,

  ∴∠EFB=∠EFP=30°,

  ∴EF=2BE,PF= PE,

  ∴①正確,②不正確;

  又∵EF⊥BP,

  ∴EF=2BE=4EQ,

  ∴③不正確;

  又∵PF=BF,∠BFP=2∠EFP=60°,

  ∴△PBF為等邊三角形,

  ∴④正確;

  所以正確的為①④,

  故答案為:①④.

  【點評】本題主要考查矩形的性質(zhì)和軸對稱的性質(zhì)、等邊三角形的判定、直角三角形的性質(zhì)等知識,綜合性較強,掌握直角三角形中30°角所對的直角邊是斜邊的一半是解題的關(guān)鍵.

  三、解答題(本題共6小題,共64分)請將必要的文字說明、計算過程或推理過程寫在答題卡的對應(yīng)位置.

  17.(10分)(2014•吉林)某校組織了主題為“讓勤儉節(jié)約成為時尚”的電子小組作品征集活動,現(xiàn)從中隨機抽取部分作品,按A,B,C,D四個等級進行評價,并根據(jù)結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

  (1)求抽取了多少份作品;

  (2)此次抽取的作品中等級為B的作品有 48 ,并補全條形統(tǒng)計圖;

  (3)若該校共征集到800份作品,請估計等級為A的作品約有多少份.

  【考點】條形統(tǒng)計圖;用樣本估計總體;扇形統(tǒng)計圖.

  【分析】(1)根據(jù)C的人數(shù)除以占的百分比,得到抽取作品的總份數(shù);

  (2)由總份數(shù)減去其他份數(shù),求出B的份數(shù),補全條形統(tǒng)計圖即可;

  (3)求出A占的百分比,乘以800即可得到結(jié)果.

  【解答】解:(1)根據(jù)題意得:30÷25%=120(份),

  則抽取了120份作品;

  (2)等級B的人數(shù)為120﹣(36+30+6)=48(份),

  補全統(tǒng)計圖,所示:

  故答案為:48;

  (3)根據(jù)題意得:800× =240(份),

  則估計等級為A的作品約有240份.

  【點評】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.

  18.(10分)(2010•蘭州)是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.

  (1)求新傳送帶AC的長度;

  (2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:(1)(2)的計算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24, ≈2.45)

  【考點】解直角三角形的應(yīng)用.

  【分析】(1)過A作BC的垂線AD.在構(gòu)建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進而在Rt△ACD中,求出AC的長.

  (2)通過解直角三角形,可求出BD、CD的長,進而可求出BC、PC的長.然后判斷PC的值是否大于2米即可.

  【解答】解:(1),作AD⊥BC于點D.

  Rt△ABD中,

  AD=ABsin45°=4× =2 .

  在Rt△ACD中,

  ∵∠ACD=30°,

  ∴AC=2AD=4 ≈5.6.

  即新傳送帶AC的長度約為5.6米;

  (2)結(jié)論:貨物MNQP應(yīng)挪走.

  解:在Rt△ABD中,BD=ABcos45°=4× =2 .

  在Rt△ACD中,CD=ACcos30°=2 .

  ∴CB=CD﹣BD=2 ﹣2 =2( ﹣ )≈2.1.

  ∵PC=PB﹣CB≈4﹣2.1=1.9<2,

  ∴貨物MNQP應(yīng)挪走.

  【點評】應(yīng)用問題盡管題型千變?nèi)f化,但關(guān)鍵是設(shè)法化歸為解直角三角形問題,必要時應(yīng)添加輔助線,構(gòu)造出直角三角形.在兩個直角三角形有公共直角邊時,先求出公共邊的長是解答此類題的基本思路.

  19.(10分)(2014•荊州)我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

  (1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

  (2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

  【考點】二次函數(shù)的應(yīng)用.

  【分析】(1)根據(jù)題中條件銷售價每降低10元,月銷售量就可多售出50臺,即可列出函數(shù)關(guān)系式;

  根據(jù)供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售即可求出x的取值.

  (2)用x表示y,然后再用x來表示出w,根據(jù)函數(shù)關(guān)系式,即可求出最大w;

  【解答】解:(1)根據(jù)題中條件銷售價每降低10元,月銷售量就可多售出50臺,

  則月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式:y=200+50× ,化簡得:y=﹣5x+2200;

  供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺,

  則 ,

  解得:300≤x≤350.

  ∴y與x之間的函數(shù)關(guān)系式為:y=﹣5x+2200(300≤x≤350);

  (2)W=(x﹣200)(﹣5x+2200),

  整理得:W=﹣5(x﹣320)2+72000.

  ∵x=320在300≤x≤350內(nèi),

  ∴當(dāng)x=320時,最大值為72000,

  即售價定為320元/臺時,商場每月銷售這種空氣凈化器所獲得的利潤w最大,最大利潤是72000元.

  【點評】本題主要考查對于一次函數(shù)的應(yīng)用和掌握,而且還應(yīng)用到將函數(shù)變形求函數(shù)極值的知識.

  20.(10分)(2011•安順)已知:,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

  (1)求證:點D是AB的中點;

  (2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

  (3)若⊙O的直徑為18,cosB= ,求DE的長.

  【考點】切線的判定與性質(zhì);勾股定理;圓周角定理;解直角三角形.

  【分析】(1)連接CD,由BC為直徑可知CD⊥AB,又BC=AC,由等腰三角形的底邊“三線合一”證明結(jié)論;

  (2)連接OD,則OD為△ABC的中位線,OD∥AC,已知DE⊥AC,可證DE⊥OC,證明結(jié)論;

  (3)連接CD,在Rt△BCD中,已知BC=18,cosB= ,求得BD=6,則AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB= ,可求AE,利用勾股定理求DE.

  【解答】(1)證明:連接CD,

  ∵BC為⊙O的直徑,∴CD⊥AB,

  又∵AC=BC,

  ∴AD=BD,即點D是AB的中點.

  (2)解:DE是⊙O的切線.

  證明:連接OD,則DO是△ABC的中位線,

  ∴DO∥AC,

  又∵DE⊥AC,

  ∴DE⊥DO即DE是⊙O的切線;

  (3)解:∵AC=BC,∴∠B=∠A,

  ∴cosB=cosA= ,

  ∵cosB= ,BC=18,

  ∴BD=6,

  ∴AD=6,

  ∵cosA= ,

  ∴AE=2,

  在Rt△AED中,DE= .

  【點評】本題考查了切線的判定與性質(zhì),勾股定理,圓周角定理,解直角三角形的運用,關(guān)鍵是作輔助線,將問題轉(zhuǎn)化為直角三角形,等腰三角形解題.

  21.(12分)(2013•包頭),在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.

  (1)①,當(dāng) 時,求 的值;

  (2)②當(dāng)DE平分∠CDB時,求證:AF= OA;

  (3)③,當(dāng)點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG= BG.

  【考點】相似形綜合題.

  【分析】(1)利用相似三角形的性質(zhì)求得EF與DF的比值,依據(jù)△CEF和△CDF同高,則面積的比就是EF與DF的比值,據(jù)此即可求解;

  (2)利用三角形的外角和定理證得∠ADF=∠AFD,可以證得AD=AF,在直角△AOD中,利用勾股定理可以證得;

  (3)連接OE,易證OE是△BCD的中位線,然后根據(jù)△FGC是等腰直角三角形,易證△EGF∽△ECD,利用相似三角形的對應(yīng)邊的比相等即可證得.

  【解答】(1)解:∵ = ,

  ∴ = .

  ∵四邊形ABCD是正方形,

  ∴AD∥BC,AD=BC,

  ∴△CEF∽△ADF,

  ∴ = ,

  ∴ = = ,

  ∴ = = ;

  (2)證明:∵DE平分∠CDB,∴∠ODF=∠CDF,

  又∵AC、BD是正方形ABCD的對角線.

  ∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD,而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,

  ∴∠ADF=∠AFD,∴AD=AF,

  在直角△AOD中,根據(jù)勾股定理得:AD= = OA,

  ∴AF= OA.

  (3)證明:連接OE.

  ∵點O是正方形ABCD的對角線AC、BD的交點.

  ∴點O是BD的中點.

  又∵點E是BC的中點,

  ∴OE是△BCD的中位線,

  ∴OE∥CD,OE= CD,

  ∴△OFE∽△CFD.

  ∴ = = ,

  ∴ = .

  又∵FG⊥BC,CD⊥BC,

  ∴FG∥CD,

  ∴△EGF∽△ECD,

  ∴ = = .

  在直角△FGC中,∵∠GCF=45°.

  ∴CG=GF,

  又∵CD=BC,

  ∴ = = ,

  ∴ = .

  ∴CG= BG.

  【點評】本題是勾股定理、三角形的中位線定理、以及相似三角形的判定與性質(zhì)的綜合應(yīng)用,理解正方形的性質(zhì)是關(guān)鍵.

  22.(12分)(2013•呼倫貝爾)已知:在平面直角坐標(biāo)系中,拋物線 交x軸于A、B兩點,交y軸于點C,且對稱軸為x=﹣2,點P(0,t)是y軸上的一個動點.

  (1)求拋物線的解析式及頂點D的坐標(biāo).

  (2)1,當(dāng)0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.

  (3)2,當(dāng)點P運動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點P的坐標(biāo);若不相似,說明理由.

  【考點】二次函數(shù)綜合題.

  【分析】(1)根據(jù)二次函數(shù)的對稱軸列式求出b的值,即可得到拋物線解析式,然后整理成頂點式形式,再寫出頂點坐標(biāo)即可;

  (2)令y=0解關(guān)于x的一元二次方程求出點A、B的坐標(biāo),過點D作DE⊥y軸于E,然后根據(jù)△PAD的面積為S=S梯形AOCE﹣S△AOP﹣S△PDE,列式整理,然后利用一次函數(shù)的增減性確定出最小值以及t值;

  (3)過點D作DF⊥x軸于F,根據(jù)點A、D的坐標(biāo)判斷出△ADF是等腰直角三角形,然后求出∠ADF=45°,根據(jù)二次函數(shù)的對稱性可得∠BDF=∠ADF=45°,從而求出∠PDA=90°時點P為BD與y軸的交點,然后求出點P的坐標(biāo),再利用勾股定理列式求出AD、PD,再根據(jù)兩邊對應(yīng)成比例夾角相等兩三角形相似判斷即可.

  【解答】解:(1)對稱軸為x=﹣ =﹣2,

  解得b=﹣1,

  所以,拋物線的解析式為y=﹣ x2﹣x+3,

  ∵y=﹣ x2﹣x+3=﹣ (x+2)2+4,

  ∴頂點D的坐標(biāo)為(﹣2,4);

  (2)令y=0,則﹣ x2﹣x+3=0,

  整理得,x2+4x﹣12=0,

  解得x1=﹣6,x2=2,

  ∴點A(﹣6,0),B(2,0),

  1,過點D作DE⊥y軸于E,

  ∵0≤t≤4,

  ∴△PAD的面積為S=S梯形AOED﹣S△AOP﹣S△PDE,

  = ×(2+6)×4﹣ ×6t﹣ ×2×(4﹣t),

  =﹣2t+12,

  ∵k=﹣2<0,

  ∴S隨t的增大而減小,

  ∴t=4時,S有最小值,最小值為﹣2×4+12=4;

  (3)2,過點D作DF⊥x軸于F,

  ∵A(﹣6,0),D(﹣2,4),

  ∴AF=﹣2﹣(﹣6)=4,

  ∴AF=DF,

  ∴△ADF是等腰直角三角形,

  ∴∠ADF=45°,

  由二次函數(shù)對稱性,∠BDF=∠ADF=45°,

  ∴∠PDA=90°時點P為BD與y軸的交點,

  ∵OF=OB=2,

  ∴PO為△BDF的中位線,

  ∴OP= DF=2,

  ∴點P的坐標(biāo)為(0,2),

  由勾股定理得,DP= =2 ,

  AD= AF=4 ,

  ∴ = =2,

  令x=0,則y=3,

  ∴點C的坐標(biāo)為(0,3),OC=3,

  ∴ = =2,

  ∴ = ,

  又∵∠PDA=90°,∠COA=90°,

  ∴Rt△ADP∽Rt△AOC.

  【點評】本題是二次函數(shù)綜合題型,主要利用了二次函數(shù)的對稱軸,三角形的面積二次函數(shù)的性質(zhì),相似三角形的判定,綜合題,但難度不是很大,(2)利用梯形和三角形的面積表示出△ADP的面積是解題的關(guān)鍵,(3)難點在于判斷出點P為BD與y軸的交點.

猜你喜歡:

1.2017中考數(shù)學(xué)試卷附答案

2.2017聊城中考數(shù)學(xué)練習(xí)試卷及答案

3.2017江西省中考數(shù)學(xué)模擬試卷及答案

4.2017荊門中考數(shù)學(xué)模擬試卷及答案

5.2017荊門中考數(shù)學(xué)模擬試卷及答案

6.2017六盤水中考數(shù)學(xué)模擬試卷

2017年廣東省茂名市中考數(shù)學(xué)模擬試卷(2)

∵AE= AB, BE=PE=2AE, APE=30, PEF=BEF=60, EFB=EFP=30, EF=2BE,PF= PE, ①正確,②不正確; 又∵EFBP, EF=2BE=4EQ, ③不正確; 又∵PF=BF,BFP=2EFP=60, △PBF為等邊三角形
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 2017年廣安中考數(shù)學(xué)模擬試卷及答案
    2017年廣安中考數(shù)學(xué)模擬試卷及答案

    中考的數(shù)學(xué)要想得到高分就需要多做中考數(shù)學(xué)模擬試題,學(xué)生備考的時候掌握中考數(shù)學(xué)模擬試題自然能考得好。以下是小編精心整理的2017年廣安中考數(shù)學(xué)模

  • 2017年甘肅省中考數(shù)學(xué)模擬真題及答案
    2017年甘肅省中考數(shù)學(xué)模擬真題及答案

    學(xué)生準(zhǔn)備中考的時候就要多做中考數(shù)學(xué)模擬試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017年甘肅省中考數(shù)學(xué)模擬試題及答案,

  • 2017年撫順中考數(shù)學(xué)練習(xí)試題及答案
    2017年撫順中考數(shù)學(xué)練習(xí)試題及答案

    學(xué)生想在中考取得好成績就要多做中考數(shù)學(xué)練習(xí)真題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017年撫順中考數(shù)學(xué)練習(xí)真題及答案

  • 2017年福州中考數(shù)學(xué)模擬試卷及答案
    2017年福州中考數(shù)學(xué)模擬試卷及答案

    想在中考中取得高分,考生要多做中考數(shù)學(xué)模擬試題,多加練習(xí)可以很快提升成績,以下是小編精心整理的2017年福州中考數(shù)學(xué)模擬試題及答案,希望能幫到

32923