2017年湖北襄陽(yáng)中考數(shù)學(xué)練習(xí)試題及答案
學(xué)生需要多做中考數(shù)學(xué)練習(xí)真題并多去復(fù)習(xí),只要認(rèn)真練習(xí)就能提高自己的成績(jī),以下是小編精心整理的2017年湖北襄陽(yáng)中考數(shù)學(xué)練習(xí)真題及答案,希望能幫到大家!
2017年湖北襄陽(yáng)中考數(shù)學(xué)練習(xí)真題
一、選擇題
1.下列各數(shù)中,最小的數(shù)是( )
A.﹣4 B.3 C.0 D.﹣2
2.是由3個(gè)大小相同的小立方塊搭成的幾何體,這個(gè)幾何體的俯視圖是( )
A. B. C. D.
3.據(jù)統(tǒng)計(jì),2015年廣州地鐵日均客運(yùn)量約為659萬(wàn).將659萬(wàn)用科學(xué)記數(shù)法表示為( )
A.0.659×107 B.6.59×106 C.6.59×107 D.659×104
4.下列計(jì)算正確的是( )
A.a2•a=2a3 B.a2•a3=2a6 C.(﹣2a3)2=4a6 D.a8÷a2=a4
5.,一個(gè)正六邊形轉(zhuǎn)盤(pán)被分成6個(gè)全等三角形,任意轉(zhuǎn)動(dòng)這個(gè)轉(zhuǎn)盤(pán)1次,當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針指向陰影區(qū)域的概率是( )
A. B. C. D.
6.已知樣本數(shù)據(jù)1,2,3,3,4,5,這組數(shù)據(jù)的中位數(shù)是( )
A.2 B.3 C.3.5 D.4
7.,在△ABC中,DE∥BC,分別交AB,AC于點(diǎn)D,E.若2AD=DB,則△ADE的面積與△ABC的面積的比等于( )
A. B. C. D.
8.,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長(zhǎng)為2的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為( )
A.(1, ) B.(﹣1,2) C.(﹣1, ) D.(﹣1, )
9.有一根40cm的金屬棒,欲將其截成x根7cm的小段和y根9cm的小段,剩余部分作廢料處理,若使廢料最少,則正整數(shù)x,y應(yīng)分別為( )
A.x=1,y=3 B.x=4,y=1 C.x=3,y=2 D.x=2,y=3
10.某汽車從A開(kāi)往360km外的B,全程的前一部分為高速公路,后一部分為普通公路.若汽車在高速公路和普通公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系所示,則下列結(jié)論正確的是( )
A.汽車在高速公路上的行駛速度為100km/h
B.普通公路總長(zhǎng)為90km
C.汽車在普通公路上的行駛速度為60km/h
D.汽車出發(fā)后4h到B地
二、填空題
11. = .
12.分解因式:a3﹣9a= .
13.反比例函數(shù)y= 的圖象在每個(gè)象限內(nèi)y的值隨著x的逐漸增大而增大,那么k的取值范圍是 .
14.,CE是△ABC的外角∠ACD的平分線,若∠B=35°,∠ACE=60°,則∠A= .
15.,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為 米.
16.,已知在Rt△ABC中,D是斜邊AB的中點(diǎn),AC=4,BC=2,將△ACD沿直線CD折疊,點(diǎn)A落在點(diǎn)E處,聯(lián)結(jié)AE,那么線段AE的長(zhǎng)度等于 .
三、計(jì)算
17.先化簡(jiǎn),再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=﹣1,b=4.
18.,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
19.甲、乙兩個(gè)不透明的口袋,甲口袋中裝有3個(gè)分別標(biāo)有數(shù)字﹣1,﹣2,﹣4的小球,乙口袋中裝有3個(gè)分別標(biāo)有數(shù)字﹣3,5,6的小球,它們的形狀、大小完全相同,現(xiàn)隨機(jī)從甲口袋中摸出一個(gè)小球記下數(shù)字,再?gòu)囊铱诖忻鲆粋€(gè)小球記下數(shù)字.
(1)請(qǐng)用列表或樹(shù)狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個(gè)數(shù)字之積為正數(shù)的概率.
20.某中學(xué)初二年級(jí)抽取部分學(xué)生進(jìn)行跳繩測(cè)試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90∼99次的為及格;每分鐘跳100∼109次的為中等;每分鐘跳110∼119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測(cè)試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列各題:
(1)參加這次跳繩測(cè)試的共有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“中等”部分所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(4)如果該校初二年級(jí)的總?cè)藬?shù)是450人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請(qǐng)你估算該校初二年級(jí)跳繩成績(jī)?yōu)?ldquo;優(yōu)秀”的人數(shù).
21.“清明節(jié)”前夕,某花店用6000元購(gòu)進(jìn)若干花籃,上市后很快售完,接著又用7500元購(gòu)進(jìn)第二批同樣的花籃.已知第二批所購(gòu)的數(shù)量是第一批數(shù)量的1.5倍,且每個(gè)花藍(lán)的進(jìn)價(jià)比第一批的進(jìn)價(jià)少5元,求第一批花籃每個(gè)進(jìn)價(jià)是多少元?
22.,△ABC中,AB=AC,以AB為直徑的O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說(shuō)明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC.
23.1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,鏈接BM
(1)菱形ABCO的邊長(zhǎng)
(2)求直線AC的解析式;
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)0
?、谠邳c(diǎn)P運(yùn)動(dòng)過(guò)程中,當(dāng)S=3,請(qǐng)直接寫(xiě)出t的值.
24.兩塊等腰直角三角板△ABC和△DEC擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).
(1)1,若點(diǎn)D.E分別在AC、BC的延長(zhǎng)線上,通過(guò)觀察和測(cè)量,猜想FH和FG的數(shù)量關(guān)系為 和位置關(guān)系為 ;
(2)將圖1中三角板△DEC繞著點(diǎn)C順時(shí)針(逆時(shí)針)旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°
(3)在△DEC繞點(diǎn)C按圖3方式旋轉(zhuǎn)的過(guò)程中,當(dāng)直線FH經(jīng)過(guò)點(diǎn)C時(shí),若AC=2,CD= ,請(qǐng)直接寫(xiě)出FG的長(zhǎng).
25.在平面直角坐標(biāo)系中,拋物線y= x2﹣ x﹣2與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,連接BD
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P時(shí)x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l,交拋物線于點(diǎn)M,交直線BD于點(diǎn)N
①當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí)(不與O、B重合),求m為何值時(shí),線段MN的長(zhǎng)度最大,并說(shuō)明此時(shí)四邊形DCMN是否為平行四邊形
②當(dāng)點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)M,使△BDM是以BD為直角邊的直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
2017年湖北襄陽(yáng)中考數(shù)學(xué)練習(xí)真題答案
一、選擇題
1.(2017•于洪區(qū)一模)下列各數(shù)中,最小的數(shù)是( )
A.﹣4 B.3 C.0 D.﹣2
【考點(diǎn)】18:有理數(shù)大小比較.
【分析】有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小,據(jù)此判斷即可.
【解答】解:根據(jù)有理數(shù)比較大小的方法,可得
﹣4<﹣2<0<3,
∴各數(shù)中,最小的數(shù)是﹣4.
故選:A.
【點(diǎn)評(píng)】此題主要考查了有理數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小.
2.(2017•于洪區(qū)一模)是由3個(gè)大小相同的小立方塊搭成的幾何體,這個(gè)幾何體的俯視圖是( )
A. B. C. D.
【考點(diǎn)】U2:簡(jiǎn)單組合體的三視圖.
【分析】畫(huà)出從上往下看到的圖形即可.
【解答】解:這個(gè)幾何體的俯視圖為:
故選C.
【點(diǎn)評(píng)】本題考查了簡(jiǎn)單組合體的三視圖:畫(huà)簡(jiǎn)單組合體的三視圖要循序漸進(jìn),通過(guò)仔細(xì)觀察和想象,再畫(huà)它的三視圖.
3.(2017•于洪區(qū)一模)據(jù)統(tǒng)計(jì),2015年廣州地鐵日均客運(yùn)量約為659萬(wàn).將659萬(wàn)用科學(xué)記數(shù)法表示為( )
A.0.659×107 B.6.59×106 C.6.59×107 D.659×104
【考點(diǎn)】1I:科學(xué)記數(shù)法—表示較大的數(shù).
【分析】用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10﹣n,其中1≤|a|<10,n為整數(shù),n的值取決于原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)的位數(shù),n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).
【解答】解:659萬(wàn)=6.59×106.
故選:B.
【點(diǎn)評(píng)】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.
4.(2017•于洪區(qū)一模)下列計(jì)算正確的是( )
A.a2•a=2a3 B.a2•a3=2a6 C.(﹣2a3)2=4a6 D.a8÷a2=a4
【考點(diǎn)】48:同底數(shù)冪的除法;46:同底數(shù)冪的乘法;47:冪的乘方與積的乘方.
【分析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.
【解答】解:A、原式=a3,不符合題意;
B、原式=a5,不符合題意;
C、原式=4a6,符合題意;
D、原式=a6,不符合題意,
故選C
【點(diǎn)評(píng)】此題考查了同底數(shù)冪的乘除法,以及冪的乘方與積的乘方,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
5.(2017•于洪區(qū)一模),一個(gè)正六邊形轉(zhuǎn)盤(pán)被分成6個(gè)全等三角形,任意轉(zhuǎn)動(dòng)這個(gè)轉(zhuǎn)盤(pán)1次,當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針指向陰影區(qū)域的概率是( )
A. B. C. D.
【考點(diǎn)】X5:幾何概率.
【分析】確定陰影部分的面積在整個(gè)轉(zhuǎn)盤(pán)中占的比例,根據(jù)這個(gè)比例即可求出轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí)指針指向陰影部分的概率.
【解答】解::轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)被均勻分成6部分,陰影部分占2份,
轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí)指針指向陰影部分的概率是: = ;
故選:C.
【點(diǎn)評(píng)】本題考查了幾何概率.用到的知識(shí)點(diǎn)為:概率=相應(yīng)的面積與總面積之比.
6.(2017•于洪區(qū)一模)已知樣本數(shù)據(jù)1,2,3,3,4,5,這組數(shù)據(jù)的中位數(shù)是( )
A.2 B.3 C.3.5 D.4
【考點(diǎn)】W4:中位數(shù).
【分析】要求中位數(shù),是按從小到大的順序排列的,所以只要找出最中間的一個(gè)數(shù)(或最中間的兩個(gè)數(shù))即可,本題是最中間的兩個(gè)數(shù)的平均數(shù).
【解答】解:這組數(shù)據(jù)的中位數(shù)為 =3,
故選:B.
【點(diǎn)評(píng)】本題考查了中位數(shù),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來(lái)確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求;如果是偶數(shù)個(gè),則找中間兩位數(shù)的平均數(shù).
7.(2017•于洪區(qū)一模),在△ABC中,DE∥BC,分別交AB,AC于點(diǎn)D,E.若2AD=DB,則△ADE的面積與△ABC的面積的比等于( )
A. B. C. D.
【考點(diǎn)】S9:相似三角形的判定與性質(zhì).
【分析】根據(jù)DE∥BC,即可證得△ADE∽△ABC,然后根據(jù)相似三角形的面積的比等于相似比的平方,即可求解.
【解答】解:∵2AD=DB,
∴AB=AD+DB=3AD,
∵DE∥BC,
∴△ADE∽△ABC,
∴ =( )2=( )2=1:9.
故選A.
【點(diǎn)評(píng)】本題考查了三角形的判定和性質(zhì):熟練掌握相似三角形的面積比是相似比的平方是解題的關(guān)鍵.
8.(2017•于洪區(qū)一模),點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長(zhǎng)為2的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為( )
A.(1, ) B.(﹣1,2) C.(﹣1, ) D.(﹣1, )
【考點(diǎn)】R7:坐標(biāo)與圖形變化﹣旋轉(zhuǎn);KK:等邊三角形的性質(zhì).
【分析】作BC⊥x軸于C,,根據(jù)等邊三角形的性質(zhì)得OA=OB=2,AC=OC=1,∠BOA=60°,則易得A點(diǎn)坐標(biāo)和O點(diǎn)坐標(biāo),再利用勾股定理計(jì)算出BC= ,然后根據(jù)第二象限點(diǎn)的坐標(biāo)特征可寫(xiě)出B點(diǎn)坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,則點(diǎn)A′與點(diǎn)B重合,于是可得點(diǎn)A′的坐標(biāo).
【解答】解:作BC⊥x軸于C,,
∵△OAB是邊長(zhǎng)為2的等邊三角形
∴OA=OB=2,AC=OC=1,∠BOA=60°,
∴A點(diǎn)坐標(biāo)為(﹣2,0),O點(diǎn)坐標(biāo)為(0,0),
在Rt△BOC中,BC= = ,
∴B點(diǎn)坐標(biāo)為(﹣1, );
∵△OAB按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OA′B′,
∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,
∴點(diǎn)A′與點(diǎn)B重合,即點(diǎn)A′的坐標(biāo)為(﹣1, ),
故選D.
【點(diǎn)評(píng)】本題考查了坐標(biāo)與圖形變化﹣旋轉(zhuǎn):記住關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征;圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來(lái)求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).常見(jiàn)的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°;解決本題的關(guān)鍵是正確理解題目,按題目的敘述一定要把各點(diǎn)的大致位置確定,正確地作出圖形.
9.(2016•天水)有一根40cm的金屬棒,欲將其截成x根7cm的小段和y根9cm的小段,剩余部分作廢料處理,若使廢料最少,則正整數(shù)x,y應(yīng)分別為( )
A.x=1,y=3 B.x=4,y=1 C.x=3,y=2 D.x=2,y=3
【考點(diǎn)】95:二元一次方程的應(yīng)用.
【分析】根據(jù)金屬棒的長(zhǎng)度是40cm,則可以得到7x+9y≤40,再根據(jù)x,y都是正整數(shù),即可求得所有可能的結(jié)果,分別計(jì)算出省料的長(zhǎng)度即可確定.
【解答】解:根據(jù)題意得:7x+9y≤40,
則x≤ ,
∵40﹣9y≥0且y是正整數(shù),
∴y的值可以是:1或2或3或4.
當(dāng)y=1時(shí),x≤ ,則x=4,此時(shí),所剩的廢料是:40﹣1×9﹣4×7=3cm;
當(dāng)y=2時(shí),x≤ ,則x=3,此時(shí),所剩的廢料是:40﹣2×9﹣3×7=1cm;
當(dāng)y=3時(shí),x≤ ,則x=1,此時(shí),所剩的廢料是:40﹣3×9﹣7=6cm;
當(dāng)y=4時(shí),x≤ ,則x=0(舍去).
則最小的是:x=3,y=2.
故選C.
【點(diǎn)評(píng)】本題考查了不等式的應(yīng)用,讀懂題意,列出算式,正確確定出x,y的所有取值情況是本題的關(guān)鍵.
10.(2017•于洪區(qū)一模)某汽車從A開(kāi)往360km外的B,全程的前一部分為高速公路,后一部分為普通公路.若汽車在高速公路和普通公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系所示,則下列結(jié)論正確的是( )
A.汽車在高速公路上的行駛速度為100km/h
B.普通公路總長(zhǎng)為90km
C.汽車在普通公路上的行駛速度為60km/h
D.汽車出發(fā)后4h到B地
【考點(diǎn)】E6:函數(shù)的圖象.
【分析】根據(jù)題意和圖象可以分別計(jì)算出各個(gè)選項(xiàng)中的量,從而可以判斷哪個(gè)選項(xiàng)是正確的,從而可以解答本題.
【解答】解:由題意可得,
汽車在高速公路上行駛速度為:180÷2=90km/h,故選項(xiàng)A錯(cuò)誤,
普通公路的總長(zhǎng)為:360﹣180=180km,故選項(xiàng)B錯(cuò)誤,
汽車在普通公路上行駛的速度為:(270﹣180)÷(3.5﹣2)=60km/h,故選項(xiàng)C正確,
汽車出發(fā)后到達(dá)B地的時(shí)間為:2+(360﹣180)÷60=5h,故選項(xiàng)D錯(cuò)誤,
故選C.
【點(diǎn)評(píng)】本題考查函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.
二、填空題
11.(2014•泰州) = 2 .
【考點(diǎn)】22:算術(shù)平方根.
【分析】如果一個(gè)數(shù)x的平方等于a,那么x是a的算術(shù)平方根,由此即可求解.
【解答】解:∵22=4,
∴ =2.
故答案為:2
【點(diǎn)評(píng)】此題主要考查了學(xué)生開(kāi)平方的運(yùn)算能力,比較簡(jiǎn)單.
12.(2016•紹興)分解因式:a3﹣9a= a(a+3)(a﹣3) .
【考點(diǎn)】55:提公因式法與公式法的綜合運(yùn)用.
【分析】本題應(yīng)先提出公因式a,再運(yùn)用平方差公式分解.
【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).
【點(diǎn)評(píng)】本題考查用提公因式法和公式法進(jìn)行因式分解的能力,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.
13.(2017•于洪區(qū)一模)反比例函數(shù)y= 的圖象在每個(gè)象限內(nèi)y的值隨著x的逐漸增大而增大,那么k的取值范圍是 k>1 .
【考點(diǎn)】G4:反比例函數(shù)的性質(zhì).
【分析】先根據(jù)反比例函數(shù)的性質(zhì)得出1﹣k<0,再解不等式求出k的取值范圍.
【解答】解:∵反比例函數(shù)的圖象在其每個(gè)象限內(nèi),y隨著x的增大而增大,
∴1﹣k<0,
k>1.
故答案為k>1.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)的圖象和性質(zhì):①、當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②、當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.
14.(2017•于洪區(qū)一模),CE是△ABC的外角∠ACD的平分線,若∠B=35°,∠ACE=60°,則∠A= 85° .
【考點(diǎn)】K8:三角形的外角性質(zhì).
【分析】根據(jù)角平分線定義求出∠ACD,根據(jù)三角形的外角性質(zhì)得出∠ACD=∠A+∠B,即可求出答案.
【解答】解:∵∠ACE=60°,CE是△ABC的外角∠ACD的平分線,
∠ACD=2∠ACE=120°,
∵∠ACD=∠A+∠B,∠B=35°,
∴∠A=∠ACD﹣∠B=85°,
故答案為:85°
【點(diǎn)評(píng)】本題考查了三角形的外角性質(zhì)的應(yīng)用,能根據(jù)三角形的外角性質(zhì)得出ACD=∠A+∠B是解此題的關(guān)鍵.
15.(2016•日照),一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為 2 米.
【考點(diǎn)】HE:二次函數(shù)的應(yīng)用.
【分析】根據(jù)已知得出直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過(guò)把y=﹣1代入拋物線解析式得出水面寬度,即可得出答案.
【解答】解:,
建立平面直角坐標(biāo)系,設(shè)橫軸x通過(guò)AB,縱軸y通過(guò)AB中點(diǎn)O且通過(guò)C點(diǎn),則通過(guò)畫(huà)圖可得知O為原點(diǎn),
拋物線以y軸為對(duì)稱軸,且經(jīng)過(guò)A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線頂點(diǎn)C坐標(biāo)為(0,2),
通過(guò)以上條件可設(shè)頂點(diǎn)式y(tǒng)=ax2+2,其中a可通過(guò)代入A點(diǎn)坐標(biāo)(﹣2,0),
到拋物線解析式得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,
當(dāng)水面下降1米,通過(guò)拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=﹣1時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=﹣1與拋物線相交的兩點(diǎn)之間的距離,
可以通過(guò)把y=﹣1代入拋物線解析式得出:
﹣1=﹣0.5x2+2,
解得:x=± ,
所以水面寬度增加到2 米,
故答案為:2 米.
【點(diǎn)評(píng)】此題主要考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問(wèn)題的關(guān)鍵.
16.(2017•于洪區(qū)一模),已知在Rt△ABC中,D是斜邊AB的中點(diǎn),AC=4,BC=2,將△ACD沿直線CD折疊,點(diǎn)A落在點(diǎn)E處,聯(lián)結(jié)AE,那么線段AE的長(zhǎng)度等于 .
【考點(diǎn)】PB:翻折變換(折疊問(wèn)題).
【分析】延長(zhǎng)CD交AE于F,由折疊的性質(zhì)得出CF⊥AE,AC=EC,得出∠AFC=90°,AF=EF,由勾股定理求出AB,由直角三角形斜邊上的中線性質(zhì)得出CD= AB=AD,得出∠DCA=∠DAC,證出△AFC∽△BCA,得出對(duì)應(yīng)邊成比例 ,求出AF,即可得出AE的長(zhǎng).
【解答】解:所示:延長(zhǎng)CD交AE于F,
由折疊的性質(zhì)得:CF⊥AE,AC=EC,
∴∠AFC=90°,AF=EF,
∵在Rt△ABC中,∠ACB=90°,
∴AB= = =2 ,
∵D是斜邊AB的中點(diǎn),
∴CD= AB=AD,
∴∠DCA=∠DAC,
∵∠AFC=∠ACB=90°,
∴△AFC∽△BCA,
∴ ,
即 ,
∴AF= ,
∴AE=2AF= ;
故答案為: .
【點(diǎn)評(píng)】本題考查了翻折變換的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì);熟練掌握翻折變換的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.
三、計(jì)算
17.(2017•于洪區(qū)一模)先化簡(jiǎn),再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=﹣1,b=4.
【考點(diǎn)】4J:整式的混合運(yùn)算—化簡(jiǎn)求值.
【分析】原式利用完全平方公式,單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并得到最簡(jiǎn)結(jié)果,把a(bǔ)與b的值代入計(jì)算即可求出值.
【解答】解:原式=a2﹣2ab+b2+3ab﹣b2﹣a2=ab,
當(dāng)a=﹣1,b=4時(shí),原式=﹣4.
【點(diǎn)評(píng)】此題考查了整式的混合運(yùn)算﹣化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
18.(2015•湘西州),在▱ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
【考點(diǎn)】LC:矩形的判定;KD:全等三角形的判定與性質(zhì);L5:平行四邊形的性質(zhì).
【分析】(1)由DE與AB垂直,BF與CD垂直,得到一對(duì)直角相等,再由ABCD為平行四邊形得到AD=BC,對(duì)角相等,利用AAS即可的值;
(2)由平行四邊形的對(duì)邊平行得到DC與AB平行,得到∠CDE為直角,利用三個(gè)角為直角的四邊形為矩形即可的值.
【解答】證明:(1)∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四邊形ABCD為平行四邊形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS);
(2)∵四邊形ABCD為平行四邊形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
則四邊形BFDE為矩形.
【點(diǎn)評(píng)】此題考查了矩形的判定,全等三角形的判定與性質(zhì),以及平行四邊形的性質(zhì),熟練掌握矩形的判定方法是解本題的關(guān)鍵.
>>>下一頁(yè)更多“2017年湖北襄陽(yáng)中考數(shù)學(xué)練習(xí)真題及答案”