六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高中勵(lì)志>

高三數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)總結(jié)

時(shí)間: 舒淇4599 分享

在日復(fù)一日的學(xué)習(xí)中,大家都背過(guò)各種知識(shí)點(diǎn)吧?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。那么,都有哪些知識(shí)點(diǎn)呢?下面小編為大家?guī)?lái)高三數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)總結(jié),希望對(duì)您有所幫助!

高三數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)總結(jié)

復(fù)數(shù)的概念:

形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

復(fù)數(shù)的表示:

復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

復(fù)數(shù)的幾何意義:

(1)復(fù)平面、實(shí)軸、虛軸:

點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即

這是因?yàn)椋恳粋€(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。

這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

復(fù)數(shù)的模:

復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

虛數(shù)單位i:

(1)它的平方等于-1,即i2=-1;

(2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

(3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

復(fù)數(shù)模的性質(zhì):

復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

高三數(shù)學(xué)下學(xué)期必背知識(shí)點(diǎn)

求函數(shù)定義域

常見(jiàn)的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

①當(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

②當(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

③當(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開(kāi)方數(shù)不小于0的實(shí)數(shù)集合。

④當(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

⑤如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

⑥復(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

⑦對(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

求函數(shù)值域

(1)、觀察法:通過(guò)對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

(2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過(guò)換元可以寫(xiě)成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過(guò)自變量的范圍可以求出該函數(shù)的值域;

(3)、判別式法:

(4)、數(shù)形結(jié)合法;通過(guò)觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

(6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來(lái)求出值域;

(7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

(8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

(9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

高三數(shù)學(xué)下學(xué)期基礎(chǔ)知識(shí)點(diǎn)

1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2.判定兩個(gè)平面平行的方法:

(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);

(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

(3)證明兩平面同垂直于一條直線。

3.兩個(gè)平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

(5)夾在兩個(gè)平行平面間的平行線段相等;

(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

1598044