淺談高中數(shù)學(xué)模型論文
模型及模型方法作為一種有效的科學(xué)認(rèn)識(shí)手段和思維方法,在知識(shí)傳授和知識(shí)學(xué)習(xí)中都發(fā)揮著非常重要的作用。下面是學(xué)習(xí)啦小編為大家整理的高中數(shù)學(xué)模型論文,供大家參考。
高中數(shù)學(xué)模型論文范文一:談高中數(shù)學(xué)建模與教學(xué)設(shè)想
【摘要】:為增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),切實(shí)培養(yǎng)學(xué)生解決實(shí)際問題的能力,分析了高中數(shù)學(xué)建模的必要性,并通過對(duì)高中學(xué)生數(shù)學(xué)建模能力的調(diào)查分析,發(fā)現(xiàn)學(xué)生數(shù)學(xué)應(yīng)用及數(shù)學(xué)建模方面存在的問題,并針對(duì)問題提出了關(guān)于高中進(jìn)行數(shù)學(xué)建模教學(xué)的幾點(diǎn)意見。
【關(guān)鍵詞】:數(shù)學(xué)建?!?shù)學(xué)應(yīng)用意識(shí) 數(shù)學(xué)建模教學(xué)
數(shù)學(xué)建模是從現(xiàn)實(shí)問題中建立數(shù)學(xué)模型的過程.在對(duì)實(shí)際問題本質(zhì)屬性進(jìn)行抽象提煉后,用簡潔的數(shù)學(xué)符號(hào)、表達(dá)式或圖形,形成便于研究的數(shù)學(xué)問題,并通過數(shù)學(xué)結(jié)論解釋某些客觀現(xiàn)象,預(yù)測(cè)發(fā)展規(guī)律,或者提供最優(yōu)策略.它的靈魂是數(shù)學(xué)的運(yùn)用并側(cè)重于來自于非數(shù)學(xué)領(lǐng)域,但需要數(shù)學(xué)工具來解決的問題.這類問題要把它抽象,轉(zhuǎn)化為一個(gè)相應(yīng)的數(shù)學(xué)問題,一般可按這樣的程序:進(jìn)行對(duì)原始問題的分析、假設(shè)、抽象的數(shù)學(xué)加工.數(shù)學(xué)工具、方法、模型的選擇和分析.模型的求解、驗(yàn)證、再分析、修改假設(shè)、再求解的迭代過程.
數(shù)學(xué)建模是數(shù)學(xué)學(xué)習(xí)的一種新的方式,它為學(xué)生提供了自主學(xué)習(xí)的空間,有助于學(xué)生體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價(jià)值和作用,體驗(yàn)數(shù)學(xué)與日常生活和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識(shí)和方法解決實(shí)際數(shù)學(xué)問題的過程,增強(qiáng)應(yīng)用意識(shí),有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力.培養(yǎng)學(xué)生的建模意識(shí),教師應(yīng)首先需要提高自己的建模意識(shí).這不僅意味著教師在教學(xué)內(nèi)容要求上的變化,更意味著要努力鉆研如何結(jié)合教材把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活,注意研究新教材各個(gè)章節(jié)要引入哪些模型問題.通過經(jīng)常滲透建模意識(shí),潛移默化,學(xué)生可以從示范建模問題中積累數(shù)學(xué)建模經(jīng)驗(yàn),激發(fā)數(shù)學(xué)建模的興趣.建模教學(xué)的目的是為了培養(yǎng)學(xué)生用數(shù)學(xué)知識(shí)去觀察、分析、提出和解決問題的能力,同時(shí)還應(yīng)該通過解決實(shí)際問題(建模過程)加深理解相應(yīng)的數(shù)學(xué)知識(shí),因此數(shù)學(xué)課堂中的建模能力必須與相應(yīng)的數(shù)學(xué)知識(shí)結(jié)合起來.
數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。數(shù)學(xué)的特點(diǎn)不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,自進(jìn)入21世紀(jì)的知識(shí)經(jīng)濟(jì)時(shí)代以來,數(shù)學(xué)科學(xué)的地位發(fā)生了巨大的變化,它正在從國家經(jīng)濟(jì)和科技的后備走到了前沿。經(jīng)濟(jì)發(fā)展的全球化、計(jì)算機(jī)的迅猛發(fā)展,數(shù)學(xué)理論與方法的不斷擴(kuò)充使得數(shù)學(xué)已成為當(dāng)代高科技的一個(gè)重要組成部分,數(shù)學(xué)已成為一種能夠普遍實(shí)施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力也成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。
目前國際數(shù)學(xué)界普遍贊同通過開展數(shù)學(xué)建?;顒?dòng)和在數(shù)學(xué)教學(xué)中推廣使用現(xiàn)代化技術(shù)來推動(dòng)數(shù)學(xué)教育改革。美國、德國、日本等發(fā)達(dá)國家普遍都十分重視數(shù)學(xué)建模教學(xué),把數(shù)學(xué)建模活動(dòng)從大學(xué)生向中學(xué)生轉(zhuǎn)移是近年國際數(shù)學(xué)教育發(fā)展的一種趨勢(shì)。“我國的數(shù)學(xué)教育在很長一段時(shí)間內(nèi)對(duì)于數(shù)學(xué)與實(shí)際、數(shù)學(xué)與其它學(xué)科的聯(lián)系未能給予充分的重視,因此,高中數(shù)學(xué)在數(shù)學(xué)應(yīng)用和聯(lián)系實(shí)際方面需要大力加強(qiáng)。”我國普通高中新的數(shù)學(xué)教學(xué)大綱中也明確提出要切實(shí)培養(yǎng)學(xué)生解決實(shí)際問題的能力,要求增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí),能初步運(yùn)用數(shù)學(xué)模型解決實(shí)際問題。這些要求不僅符合數(shù)學(xué)本身發(fā)展的需要,也是社會(huì)發(fā)展的需要。因此我們的數(shù)學(xué)教學(xué)不僅要使學(xué)生知道許多重要的數(shù)學(xué)概念、方法和結(jié)論,而且要提高學(xué)生的思維能力,培養(yǎng)學(xué)生自覺地運(yùn)用數(shù)學(xué)知識(shí)去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質(zhì)。而數(shù)學(xué)建模通過"從實(shí)際情境中抽象出數(shù)學(xué)問題,求解數(shù)學(xué)模型,回到現(xiàn)實(shí)中進(jìn)行檢驗(yàn),必要時(shí)修改模型使之更切合實(shí)際"這一過程,促使學(xué)生圍繞實(shí)際問題查閱資料、收集信息、整理加工、獲取新知識(shí),從而拓寬了學(xué)生的知識(shí)面和能力。數(shù)學(xué)建模將各種知識(shí)綜合應(yīng)用于解決實(shí)際問題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識(shí)分析問題、解決問題的能力的必備手段之一,是改善學(xué)生學(xué)習(xí)方式的突破口。因此有計(jì)劃地開展數(shù)學(xué)建?;顒?dòng),將有效地培養(yǎng)學(xué)生的能力,提高學(xué)生的綜合素質(zhì)。
數(shù)學(xué)建??梢蕴岣邔W(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生不怕吃苦、敢于戰(zhàn)勝困難的堅(jiān)強(qiáng)意志,培養(yǎng)自律、團(tuán)結(jié)的優(yōu)秀品質(zhì),培養(yǎng)正確的數(shù)學(xué)觀。具體的調(diào)查表明,大部分學(xué)生對(duì)數(shù)學(xué)建模比較感興趣,并不同程度地促進(jìn)了他們對(duì)于數(shù)學(xué)及其他課程的學(xué)習(xí).有許多學(xué)生認(rèn)為:"數(shù)學(xué)源于生活,生活依靠數(shù)學(xué),平時(shí)做的題都是理論性較強(qiáng),實(shí)際性較弱的題,都是在理想化狀態(tài)下進(jìn)行討論,而數(shù)學(xué)建模問題貼近生活,充滿趣味性"; "數(shù)學(xué)建模使我更深切地感受到數(shù)學(xué)與實(shí)際的聯(lián)系,感受到數(shù)學(xué)問題的廣泛,使我們對(duì)于學(xué)習(xí)數(shù)學(xué)的重要性理解得更為深刻"。數(shù)學(xué)建模能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)進(jìn)行分析、推理、證明和計(jì)算的能力;用數(shù)學(xué)語言表達(dá)實(shí)際問題及用普通人能理解的語言表達(dá)數(shù)學(xué)結(jié)果的能力;應(yīng)用計(jì)算機(jī)及相應(yīng)數(shù)學(xué)軟件的能力;獨(dú)立查找文獻(xiàn),自學(xué)的能力,組織、協(xié)調(diào)、管理的能力;創(chuàng)造力、想象力、聯(lián)想力和洞察力。由此,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模知識(shí)是很有必要的。
那么高中的數(shù)學(xué)建模教學(xué)應(yīng)如何進(jìn)行呢?數(shù)學(xué)建模的教學(xué)本身是一個(gè)不斷探索、不斷創(chuàng)新、不斷完善和提高的過程。不同于傳統(tǒng)的教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實(shí)驗(yàn)室為基礎(chǔ)、以學(xué)生為中心、以問題為主線、以培養(yǎng)能力為目標(biāo)來組織教學(xué)工作。通過教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識(shí)與能力。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)好的問題,引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識(shí),鼓勵(lì)學(xué)生積極開展討論和辯論,主動(dòng)探索解決之法。教學(xué)過程的重點(diǎn)是創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,強(qiáng)調(diào)的是獲取新知識(shí)的能力,是解決問題的過程,而不是知識(shí)與結(jié)果。
一、在教學(xué)中傳授學(xué)生初步的數(shù)學(xué)建模知識(shí)。
中學(xué)數(shù)學(xué)建模的目的旨在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),掌握數(shù)學(xué)建模的方法,為將來的學(xué)習(xí)、工作打下堅(jiān)實(shí)的基礎(chǔ)。在教學(xué)時(shí)將數(shù)學(xué)建模中最基本的過程教給學(xué)生:利用現(xiàn)行的數(shù)學(xué)教材,向?qū)W生介紹一些常用的、典型的數(shù)學(xué)模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些數(shù)學(xué)基本模型問題,如儲(chǔ)蓄問題、信用貸款問題可結(jié)合在數(shù)列教學(xué)中。教師可以通過教材中一些不大復(fù)雜的應(yīng)用問題,帶著學(xué)生一起來完成數(shù)學(xué)化的過程,給學(xué)生一些數(shù)學(xué)應(yīng)用和數(shù)學(xué)建模的初步體驗(yàn)。
二、培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),增強(qiáng)數(shù)學(xué)建模意識(shí)。
學(xué)生的應(yīng)用意識(shí)體現(xiàn)在以下兩個(gè)方面:
一是面對(duì)實(shí)際問題,能主動(dòng)嘗試從數(shù)學(xué)的角度運(yùn)用所學(xué)知識(shí)和方法尋求解決問題的策略,學(xué)習(xí)者在學(xué)習(xí)的過程中能夠認(rèn)識(shí)到數(shù)學(xué)是有用的。 二是認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實(shí)世界中有著廣泛的應(yīng)用,生活中處處有數(shù)學(xué),數(shù)學(xué)就在他的身邊。
走進(jìn)生活,細(xì)心觀察,生活處處皆數(shù)學(xué).籃球是一項(xiàng)不錯(cuò)的運(yùn)動(dòng),打籃球究竟如何提高進(jìn)球率是每一個(gè)籃球愛好者夢(mèng)寐以求的問題.籃球中有一種進(jìn)球叫"打板",就是將球打在籃板上,利用球的反彈性使其進(jìn)入籃筐.實(shí)踐證明,這樣的進(jìn)球率確實(shí)相當(dāng)高.于是可以將這個(gè)問題,在忽略一切外界條件的情況下,假定:球在籃板上的反射嚴(yán)格遵照光的反射原理,即入射角等于反射角.在二維空間(俯視)內(nèi)進(jìn)行問題的研究.假設(shè)籃球在空中的飛行軌跡是標(biāo)準(zhǔn)拋物線.在此基礎(chǔ)上,嘗試?yán)枚魏瘮?shù)的性質(zhì)建立相應(yīng)的數(shù)學(xué)模型,就可取得很好的數(shù)學(xué)效果.
此外,在就餐時(shí),細(xì)心了解本校食堂學(xué)生的用餐排隊(duì)問題,也可以進(jìn)行數(shù)學(xué)建模的嘗試:根據(jù)就餐學(xué)生人數(shù)、放學(xué)時(shí)間以及食堂工作人員的打菜速度等因素建立數(shù)學(xué)模型,指導(dǎo)食堂開設(shè)合理的窗口數(shù)以及窗口與餐桌的空間距離等問題.這些都是數(shù)學(xué)教師運(yùn)用數(shù)學(xué)建模進(jìn)行教學(xué)的良好機(jī)會(huì).這樣的問題涵蓋了課本要求的知識(shí)點(diǎn),但同時(shí),在解決這類問題的過程當(dāng)中,不知不覺使學(xué)生提高了動(dòng)手能力,培養(yǎng)了學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),激發(fā)了學(xué)生學(xué)習(xí)的興趣和動(dòng)機(jī),有利于提高學(xué)生分析和解決問題的能力,從而真正體現(xiàn)了數(shù)學(xué)建模與課本知識(shí)的融合.
在教學(xué)的過程中,引入數(shù)學(xué)建模時(shí)還應(yīng)該注意以下幾點(diǎn):應(yīng)努力保持自己的"好奇心",開通自己的"問題源",儲(chǔ)備相關(guān)知識(shí).這一過程也可讓學(xué)生從一開始就參與進(jìn)來,使學(xué)生提高自學(xué)能力后自我探究.
將數(shù)學(xué)建模思想引入數(shù)學(xué)課堂要結(jié)合實(shí)際,這是關(guān)鍵.學(xué)生在課堂中解決的實(shí)際問題即建模材料必須經(jīng)過一定的加工,否則有可能過于復(fù)雜,有些問題的數(shù)學(xué)結(jié)論可能偏離生活實(shí)際太多,也很正常.
數(shù)學(xué)課堂中的建模能力必須與相應(yīng)的數(shù)學(xué)知識(shí)結(jié)合起來.同時(shí)還應(yīng)該通過解決實(shí)際問題(建模過程)加深對(duì)相應(yīng)的數(shù)學(xué)知識(shí)的理解.
其次,關(guān)于如何培養(yǎng)學(xué)生的應(yīng)用意識(shí):在數(shù)學(xué)教學(xué)和對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)的指導(dǎo)中,介紹知識(shí)的來龍去脈時(shí)多與實(shí)際生活相聯(lián)系。例如,日常生活中存在著“不同形式的等量關(guān)系和不等量關(guān)系”以及“變量間的函數(shù)對(duì)應(yīng)關(guān)系”、“變相間的非確切的相關(guān)關(guān)系”、“事物發(fā)生的可預(yù)測(cè)性,可能性大小”等,這些正是數(shù)學(xué)中引入“方程”、“不等式”、“函數(shù)”“變量間的線性相關(guān)”、“概率”的實(shí)際背景。另外鍛煉學(xué)生學(xué)會(huì)運(yùn)用數(shù)學(xué)語言描述周圍世界出現(xiàn)的數(shù)學(xué)現(xiàn)象。數(shù)學(xué)是一種“世界通用語言”它能夠準(zhǔn)確、清楚、間接地刻畫和描述日常生活中的許多現(xiàn)象。應(yīng)讓學(xué)生養(yǎng)成運(yùn)用數(shù)學(xué)語言進(jìn)行交流的習(xí)慣。例如,當(dāng)學(xué)生乘坐出租車時(shí),他應(yīng)能意識(shí)到付費(fèi)與行駛時(shí)間或路程之間具有一定的函數(shù)關(guān)系。鼓勵(lì)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問題。首先通過觀察分析、提煉出實(shí)際問題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,當(dāng)然這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來解決實(shí)際問題,使數(shù)學(xué)建模意識(shí)成為學(xué)生思考問題的方法和習(xí)慣。通過教師的潛移默化,經(jīng)常滲透數(shù)學(xué)建模意識(shí),學(xué)生可以從各類大量的建模問題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力。
三、在教學(xué)中注意聯(lián)系相關(guān)學(xué)科加以運(yùn)用
在數(shù)學(xué)建模教學(xué)中應(yīng)該重視選用數(shù)學(xué)與物理、化學(xué)、生物、美學(xué)等知識(shí)相結(jié)合的跨學(xué)科問題和大量與日常生活相聯(lián)系(如投資買賣、銀行儲(chǔ)蓄、測(cè)量、乘車、運(yùn)動(dòng)等方面)的數(shù)學(xué)問題,從其它學(xué)科中選擇應(yīng)用題,通過構(gòu)建模型,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)工具解決該學(xué)科難題的能力。例如,高中生物學(xué)科以描述性的語言為主,有的學(xué)生往往以為學(xué)好生物學(xué)是與數(shù)學(xué)沒有關(guān)系的。他們尚未樹立理科意識(shí),缺乏理科思維。比如:他們不會(huì)用數(shù)學(xué)上的排列與組合來分析減數(shù)分裂過程配子的基因組成;也不會(huì)用數(shù)學(xué)上的概率的相加、相乘原理來解決一些遺傳病機(jī)率的計(jì)算等等。這些需要教師在平時(shí)相應(yīng)的課堂內(nèi)容教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此我們?cè)诮虒W(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對(duì)其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識(shí)的一個(gè)不可忽視的途徑。又例如教了正弦函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)寫出物理中振動(dòng)圖象或交流圖象的數(shù)學(xué)表達(dá)式。
建模教學(xué)的目的是為了培養(yǎng)學(xué)生用數(shù)學(xué)知識(shí)去觀察、分析、提出和解決問題的能力,展示學(xué)生多方面的數(shù)學(xué)思維能力,培養(yǎng)其創(chuàng)新意識(shí),讓學(xué)生體會(huì)發(fā)現(xiàn)問題、探究問題、解決問題的快樂.數(shù)學(xué)建模是數(shù)學(xué)學(xué)習(xí)的一種新的方式,它為學(xué)生提供了自主學(xué)習(xí)的空間,有助于學(xué)生體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價(jià)值和作用,體驗(yàn)數(shù)學(xué)與日常生活和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識(shí)和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識(shí).高中數(shù)學(xué)課程中的數(shù)學(xué)建模與數(shù)學(xué)探究的不同之處是它更側(cè)重于非數(shù)學(xué)領(lǐng)域需用數(shù)學(xué)工具來解決的問題.數(shù)學(xué)建模的能力是伴隨著數(shù)學(xué)建模的學(xué)習(xí)和數(shù)學(xué)建模的能力逐漸形成的,是伴隨著對(duì)數(shù)學(xué)理解和感悟的加深,數(shù)學(xué)意識(shí)的增強(qiáng)、綜合知識(shí)的拓寬逐漸提高的.不是懂?dāng)?shù)學(xué)就會(huì)建模,也不可能拋出個(gè)實(shí)際問題,搞一次建?;顒?dòng)即一蹴而就,更不能不切實(shí)際地指望在高三畢業(yè)前緊張的教學(xué)期間將數(shù)學(xué)一網(wǎng)打盡.而是在數(shù)學(xué)建模的教學(xué)上應(yīng)該從高一抓起,從平時(shí)的教學(xué)抓起,從新教材的各個(gè)模塊抓起.
最后,為了培養(yǎng)學(xué)生的建模意識(shí),中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識(shí)。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活。中學(xué)教師只有通過對(duì)數(shù)學(xué)建模的系統(tǒng)學(xué)習(xí)和研究,才能準(zhǔn)確地的把握數(shù)學(xué)建模問題的深度和難度,更好地推動(dòng)中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。
【參考文獻(xiàn)】
【1】《問題解決的數(shù)學(xué)模型方法》北京師范大學(xué)出版社,1999.8
【2】普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)),人民教育出版社,2003.4
【3】《數(shù)學(xué)建?;A(chǔ)》清華大學(xué)出版社,2004.6
【4】《初等數(shù)學(xué)建模》四川大學(xué)出版社。2004.12
高中數(shù)學(xué)模型論文范文二:關(guān)于高中數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探討
一、數(shù)學(xué)建模在高等數(shù)學(xué)教學(xué)中的重要作用
數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要解決實(shí)際問題就必需建立數(shù)學(xué)模型,即數(shù)學(xué)建模。數(shù)學(xué)建模是指對(duì)現(xiàn)實(shí)世界的一些特定對(duì)象,為了某特定目的,做出一些重要的簡化和假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具得到一個(gè)數(shù)學(xué)結(jié)構(gòu),用它來解釋特定現(xiàn)象的現(xiàn)實(shí)性態(tài),預(yù)測(cè)對(duì)象的未來狀況,提供處理對(duì)象的優(yōu)化決策和控制,設(shè)計(jì)滿足某種需要的產(chǎn)品等。從此意義上講數(shù)學(xué)建模和數(shù)學(xué)一樣有古老 歷史 。例如,歐幾里德幾何就是一個(gè)古老的數(shù)學(xué)模型,牛頓萬有引力定律也是數(shù)學(xué)建模的一個(gè)光輝典范。今天,數(shù)學(xué)以空前的廣度和深度向其它 科學(xué) 技術(shù)領(lǐng)域滲透,過去很少應(yīng)用數(shù)學(xué)的領(lǐng)域現(xiàn)在迅速走向定量化,數(shù)量化,需建立大量的數(shù)學(xué)模型。特別是新技術(shù)、新工藝蓬勃興起, 計(jì)算 機(jī)的普及和廣泛應(yīng)用,數(shù)學(xué)在許多高新技術(shù)上起著十分關(guān)鍵的作用。因此數(shù)學(xué)建模被時(shí)代賦予了更為重要的意義。
二、數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中的運(yùn)用
高等數(shù)學(xué)教學(xué)的重點(diǎn)是提高 學(xué)生 的數(shù)學(xué)素質(zhì),學(xué)生的數(shù)學(xué)素質(zhì)主要體現(xiàn)為:抽象思維和邏輯推理的能力;如今在一些教材中也漸漸的補(bǔ)充了與實(shí)際問題相對(duì)應(yīng)的例子,習(xí)題。如:人大出版社中的第四章第八節(jié)所提到的邊際分析與彈性分析,以及幾乎各種教材中對(duì)于函數(shù)極值問題的實(shí)際應(yīng)用的例子。其實(shí)這就是實(shí)際應(yīng)用中的一個(gè)簡單的建摸問題。但僅僅知道運(yùn)算還是不夠的,我們還要從具體問題給出的數(shù)據(jù)建立適用的模型。下面我們就具體的例子來看看高等數(shù)學(xué)對(duì) 經(jīng)濟(jì) 數(shù)學(xué)的應(yīng)用。
例:有資料記載某 農(nóng)村 的達(dá)到小康水平的標(biāo)準(zhǔn)是年人均收入為2000元,據(jù)調(diào)查該村公400人,其中一戶4人年收入60萬,另一戶4人20萬,其中70%的人年收入在300元左右,其余在500左右。對(duì)于該村是否能定位在已經(jīng)達(dá)到了小康水平呢。首先我們計(jì)算平均收入:60萬,20萬各一戶共8人,300元共400×70%=280人,500元共400-288=112人。
平均收入為元
從這個(gè)數(shù)據(jù)我們可以看出該村的平均收入超過2000元,所以認(rèn)為達(dá)到了小康水平,但我們?cè)趤砜匆幌聰?shù)據(jù),有99.5%的人均收入低于2000千,所以單從人均收入來衡量是不科學(xué)的,那么在概率論中我們利用人均年收入的標(biāo)準(zhǔn)差a來衡量這個(gè)標(biāo)準(zhǔn)。
我們可以看出標(biāo)準(zhǔn)差是平均水平的六倍多,標(biāo)準(zhǔn)差系數(shù)竟超過100%,所以我們不能把該村看作是達(dá)到了小康水平。因此我們要真正的把高等數(shù)學(xué)融入到實(shí)際應(yīng)用當(dāng)中是我們高確良 等 教育 的一個(gè)重點(diǎn)要改革的內(nèi)容。為了在概念的引入中展現(xiàn)數(shù)學(xué)建模,首先必須提出具有實(shí)際背景的引例。下面我們就以高等數(shù)學(xué)中導(dǎo)數(shù)這一概念為例加以說明。
(1)引例
模型I:變速直線運(yùn)動(dòng)的瞬時(shí)速度
1、提出問題:設(shè)有一物體在作變速運(yùn)動(dòng),如何求它在任一時(shí)刻的瞬時(shí)速度? 2、建立模型
分析:我們?cè)瓉碇粚W(xué)過求勻速運(yùn)動(dòng)在某一時(shí)刻的速度公式:S=vt那么,對(duì)于變速問題,我們?cè)撊绾谓鉀Q呢?師生討論:由于變速運(yùn)動(dòng)的速度通常是連續(xù)變化的,所以當(dāng)時(shí)間變化很小時(shí),可以近似當(dāng)勻速運(yùn)動(dòng)來對(duì)待。假設(shè):設(shè)一物體作變速直線運(yùn)動(dòng),以它的運(yùn)動(dòng)直線為數(shù)軸,則在物體的運(yùn)動(dòng)過程中,對(duì)于每一時(shí)刻t,物體的相應(yīng)位置可以用數(shù)軸上的一個(gè)坐標(biāo)S表示,即S與t之間存在函數(shù)關(guān)系:s=s(t)。稱其為位移函數(shù)。設(shè)在t0時(shí)刻物體的位置為S=s(t0)。當(dāng)在t0時(shí)刻,給時(shí)間增加了△t,物體的位置變?yōu)镾=(t0+△t):此時(shí)位移改變了△S=S(t0+△t)-S(t0)。于是,物體在t0到t0+△t這段時(shí)間內(nèi)的平均速度為:v=當(dāng)△t很小時(shí),v可作為物體在t0時(shí)刻瞬時(shí)速度的近似值。且當(dāng)—△t—越小,v就越接近物體在t0時(shí)刻的瞬時(shí)速度v,即vt0=[(1)式]; (1)即為己知物體運(yùn)動(dòng)的位移函數(shù)s=s(t),求物體運(yùn)動(dòng)到任一時(shí)刻t0時(shí)的瞬時(shí)速度的數(shù)學(xué)模型。
模型II:非恒定電流的電流強(qiáng)度。己知從0到t這段時(shí)間流過導(dǎo)體橫截面的電量為Q=Q(t),求在t0時(shí)刻通過導(dǎo)體的電流強(qiáng)度?通過對(duì)此模型的分析,同學(xué)們發(fā)現(xiàn)建立模型II的方法步驟與模型I完全相同,從而采用與模型I類似的方法,建立的數(shù)學(xué)模型為:It0=要求解這兩個(gè)模型,對(duì)于簡單的函數(shù)還容易 計(jì)算 ,但對(duì)于復(fù)雜的函數(shù),求極限很難求出。為了求解這
兩個(gè)模型,我們拋開它們的實(shí)際意義單從數(shù)學(xué)結(jié)構(gòu)上看,卻具有完全相同的形式,可歸結(jié)為同一個(gè)數(shù)學(xué)模型,即求函數(shù)改變量與自變量改變量比值,當(dāng)自變量改變量趨近于零時(shí)的極限值。在 自然 科學(xué) 和 經(jīng)濟(jì) 活動(dòng)中也有很多問題也可歸結(jié)為這樣的數(shù)學(xué)模型,為此,我們把這種形式的極限定義為函數(shù)的導(dǎo)數(shù)。
(2)導(dǎo)數(shù)的概念
定義:設(shè)函數(shù)y=f(x)在點(diǎn)x0的某一領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x時(shí),函數(shù)有相應(yīng)的增量△y=f(x0+△x)-f(x0)。如果當(dāng)△x→0時(shí)△y△x的極限存在,這個(gè)極限值就叫做函數(shù)y=f(x)在x0點(diǎn)的導(dǎo)數(shù)。即函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),記作f′(x0)或f′|x=x0即f′(x0)=。有了導(dǎo)數(shù)的定義,前面兩個(gè)問題可以重述為:(1)變速直線運(yùn)動(dòng)在時(shí)刻t0的瞬時(shí)速度,就是位移函數(shù)S=S(t)在t0處對(duì)時(shí)間t的導(dǎo)數(shù)。即vt0=S′(t0)。(2)非恒定電流在時(shí)刻t0的電流強(qiáng)度,是電量函數(shù)Q=Q(t)在t0處對(duì)時(shí)間t的導(dǎo)數(shù)。即It0=Q′(t0)。
如果函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)每一點(diǎn)都可導(dǎo),稱y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo)。這時(shí),對(duì)于(a,b)中的每一個(gè)確定的x值,對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù)值f′(x),這樣就確定了一個(gè)新的函數(shù),此函數(shù)稱為函數(shù)y=f(x)的導(dǎo)函數(shù),記作y′或f′(x),導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。顯然,y=f(x)在x0處的導(dǎo)數(shù)f′(x0),就是導(dǎo)函數(shù)f′(x)在點(diǎn)x0處的函數(shù)值。由導(dǎo)函數(shù)的定義,我們可以推導(dǎo)出一系列的求導(dǎo)公式,求導(dǎo)法則。(略)有了求導(dǎo)公式,求導(dǎo)法則后,我們?cè)俜椿厝デ蠼馇懊娴哪P途腿菀椎枚唷,F(xiàn)在我們就返回去接著前面模型I的建模步驟。
3、求解模型:我們就以自由落體運(yùn)動(dòng)為例來求解。
4、模型檢驗(yàn):上面所求結(jié)果與高中物理上所求得的結(jié)果一致。從而驗(yàn)證了前面所建立模型的正確性。
5、模型的推廣:前面兩個(gè)模型的實(shí)質(zhì),就是函數(shù)在某點(diǎn)的瞬時(shí)變化率。由此可以推廣為:求函數(shù)在某一點(diǎn)的變化率問題都可以直接用導(dǎo)數(shù)來解,而不須像前面那樣重復(fù)建立模型。除了在概念教學(xué)中可以浸透數(shù)學(xué)建模的思想和方法外,還可以在習(xí)題教學(xué)中浸透這種思想和方法。在這里就不一一列舉。
通過數(shù)學(xué)建模的思想引入高等數(shù)學(xué)的教學(xué)中,其主要目的是通過數(shù)學(xué)建模的過程來使學(xué)生進(jìn)一步熟悉基本的教學(xué)內(nèi)容,培養(yǎng)學(xué)生的創(chuàng)新精神和科研意識(shí),提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的思想和方法。
淺談高中數(shù)學(xué)模型論文相關(guān)文章: