數(shù)學(xué)教育本科畢業(yè)論文范文
在數(shù)學(xué)教育中,教師應(yīng)當(dāng)尊重學(xué)生的主體地位,通過學(xué)生的主動參與,發(fā)揮數(shù)學(xué)在精神領(lǐng)域上的教育功效。下面是學(xué)習(xí)啦小編給大家推薦的數(shù)學(xué)教育本科畢業(yè)論文范文,希望大家喜歡!
數(shù)學(xué)教育本科畢業(yè)論文范文篇一
《數(shù)學(xué)概念教育初探》
摘要:概念是思維的基本形式,具有確定研究對象和任務(wù)的作用。數(shù)學(xué)概念則是客觀事物中數(shù)與形本質(zhì)屬性的反映。數(shù)學(xué)概念是構(gòu)建數(shù)學(xué)理論大廈的基石,是導(dǎo)出數(shù)學(xué)定理和數(shù)學(xué)法則的邏輯基礎(chǔ),是提高解題能力的前提,是數(shù)學(xué)學(xué)科的靈魂和精髓。因此,數(shù)學(xué)概念教學(xué)是“雙基”教學(xué)的核心,是數(shù)學(xué)教學(xué)的重要組成部分,正確理解概念是學(xué)好數(shù)學(xué)的基礎(chǔ),學(xué)好概念是學(xué)好數(shù)學(xué)最重要的一環(huán),筆者就數(shù)學(xué)概念教學(xué)提出自己的看法。
關(guān)鍵詞:數(shù)學(xué)概念;數(shù)學(xué)素養(yǎng);思維品質(zhì)
中圖分類號:G633.6 文獻標識碼:A 文章編號:1992-7711(2016)06-0071
一、數(shù)學(xué)概念的特點和學(xué)習(xí)意義
數(shù)學(xué)概念是反映一類對象本質(zhì)屬性的思維形式,它具有相對獨立性。概念反映的是一類對象的本質(zhì)屬性,即這類對象的內(nèi)在的、固有的屬性,而不是表面的屬性,而這類對象是現(xiàn)實世界的數(shù)量關(guān)系和空間形式,它們已被舍去了具體物質(zhì)屬性和具體的關(guān)系,僅被抽取出量的關(guān)系和形式構(gòu)造。在某種程度上表現(xiàn)為對原始對象具體內(nèi)容的相對獨立性。
數(shù)學(xué)概念又具有抽象與具體的雙重性。數(shù)學(xué)概念既然代表了一類對象的本質(zhì)屬性,那么它是抽象的。以“矩形”概念為例,現(xiàn)實世界中沒見過抽象的矩形,而只能見到形形色色的具體的矩形。從這個意義上說,數(shù)學(xué)概念“脫離”了現(xiàn)實。由于數(shù)學(xué)中使用了形式化、符號化的語言,使數(shù)學(xué)概念離現(xiàn)實更遠,即抽象程度更高。但同時,正因為抽象程度愈高,與現(xiàn)實的原始對象聯(lián)系愈弱,才使數(shù)學(xué)概念應(yīng)用愈廣泛。但不管怎么抽象,高層次的概念總是以低層次的概念為其具體內(nèi)容。且數(shù)學(xué)概念是數(shù)學(xué)命題、數(shù)學(xué)推理的基礎(chǔ)部分,就整個數(shù)學(xué)體系而言,概念是一個實在的東西。所以,它既是抽象的又是具體的。
數(shù)學(xué)概念還具有邏輯聯(lián)系性。數(shù)學(xué)中大多數(shù)概念都是在原始概念(原名)的基礎(chǔ)上形成的,并采用邏輯定義的方法,以語言或符號的形式使之固定。其他學(xué)科均沒有數(shù)學(xué)中諸概念那樣具有如此精確的內(nèi)涵和如此豐富、嚴謹?shù)倪壿嬄?lián)系。
數(shù)學(xué)概念教學(xué)是中學(xué)數(shù)學(xué)中至關(guān)重要的一項內(nèi)容,是基礎(chǔ)知識和基本技能教學(xué)的核心,正確理解概念是學(xué)好數(shù)學(xué)的基礎(chǔ),學(xué)好概念是學(xué)好數(shù)學(xué)最重要的一環(huán)。一些學(xué)生數(shù)學(xué)之所以差,概念不清往往是最直接的原因,特別像筆者所在學(xué)校這樣的普通中學(xué)的學(xué)生,數(shù)學(xué)素養(yǎng)差的關(guān)鍵是在對數(shù)學(xué)概念的理解、應(yīng)用和轉(zhuǎn)化等方面的差異。因此,抓好概念教學(xué)是提高中學(xué)數(shù)學(xué)教學(xué)質(zhì)量的帶有根本性意義的一環(huán)。
從平常數(shù)學(xué)概念的教學(xué)實際來看,學(xué)生往往會出現(xiàn)兩種傾向,其一是有的學(xué)生認為基本概念單調(diào)乏味,不去重視它,不求甚解,導(dǎo)致概念認識和理解模糊;其二是有的學(xué)生對基本概念雖然重視但只是死記硬背,而不去真正透徹理解,只有機械的、零碎的認識。久而久之,嚴重影響對數(shù)學(xué)基礎(chǔ)知識和基本技能的掌握和應(yīng)用。比如有的學(xué)生認為是奇函數(shù),有的學(xué)生在解題中得到異面直線的夾角為鈍角,有的學(xué)生認為函數(shù)與直線有兩個交點,這些錯誤都是由于學(xué)生對概念認識模糊造成的。只有真正掌握了數(shù)學(xué)中的基本概念,我們才能把握數(shù)學(xué)的知識系統(tǒng),才能正確、合理、迅速地進行運算、論證和空間想象。從一定意義上說,數(shù)學(xué)水平的高低,取決于對數(shù)學(xué)概念掌握的程度。
二、數(shù)學(xué)概念的教學(xué)形式
1. 注重概念的本源、概念產(chǎn)生的基礎(chǔ),體驗數(shù)學(xué)概念形成過程
每一個概念的產(chǎn)生都有豐富的知識背景,舍棄這些背景,直接拋給學(xué)生一連串的概念是傳統(tǒng)教學(xué)模式中司空見慣的做法,這種做法常常使學(xué)生感到茫然,丟掉了培養(yǎng)學(xué)生概括能力的極好機會。由于概念本身具有的嚴密性、抽象性和明確規(guī)定性,傳統(tǒng)教學(xué)中往往比較重視培養(yǎng)思維的邏輯性和精確性,在方式上以“告訴”為主讓學(xué)生“占有”新概念,置學(xué)生于被動地位,使思維呈現(xiàn)依賴性,這不利于創(chuàng)新型人才的培養(yǎng)。“學(xué)習(xí)最好的途徑是自己去發(fā)現(xiàn)”。學(xué)生如能在教師創(chuàng)設(shè)的情景中像數(shù)學(xué)家那樣去“想數(shù)學(xué)”,“經(jīng)歷”一遍發(fā)現(xiàn)、創(chuàng)新的過程,那么在獲得概念的同時還能培養(yǎng)他們的創(chuàng)造精神。由于概念教學(xué)在整個數(shù)學(xué)教學(xué)中起著舉足輕重的作用,我們應(yīng)重視在數(shù)學(xué)概念教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維。引入是概念教學(xué)的第一步,也是形成概念的基礎(chǔ)。概念引入時教師要鼓勵學(xué)生猜想,即讓學(xué)生依據(jù)已有的材料和知識作出符合一定經(jīng)驗與事實的推測性想象,讓學(xué)生經(jīng)歷數(shù)學(xué)家發(fā)現(xiàn)新概念的最初階段。牛頓曾說:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn)。”猜想作為數(shù)學(xué)想象表現(xiàn)形式的最高層次,屬于創(chuàng)造性想象,是推動數(shù)學(xué)發(fā)展的強大動力。因此,在概念引入時培養(yǎng)學(xué)生敢于猜想的習(xí)慣,是形成數(shù)學(xué)直覺,發(fā)展數(shù)學(xué)思維,獲得數(shù)學(xué)發(fā)現(xiàn)的基本素質(zhì),也是培養(yǎng)創(chuàng)造性思維的重要因素。
比如,在立體幾何中異面直線距離的概念,傳統(tǒng)的方法是給出異面直線公垂線的概念,然后指出兩垂足間的線段長就叫做兩條異面直線的距離。教學(xué)可以先讓學(xué)生回顧一下過去學(xué)過的有關(guān)距離的概念,如兩點之間的距離,點到直線的距離,兩平行線之間的距離,引導(dǎo)學(xué)生思考這些距離有什么特點,發(fā)現(xiàn)共同的特點是最短與垂直。然后,啟發(fā)學(xué)生思索在兩條異面直線上是否也存在這樣的兩點,它們間的距離是最短的?如果存在,應(yīng)當(dāng)有什么特征?于是經(jīng)過共同探索,得出如果這兩點的連線段和兩條異面直線都垂直,則其長是最短的,并通過實物模型演示確認這樣的線段存在,在此基礎(chǔ)上,自然地給出異面直線距離的概念。這樣做,不僅使學(xué)生得到了概括能力的訓(xùn)練,還嘗到了數(shù)學(xué)發(fā)現(xiàn)的滋味,認識到距離這個概念的本質(zhì)屬性。
2. 挖掘概念的內(nèi)涵與外延,理解概念
新概念的引入,是對已有概念的繼承、發(fā)展和完善。有些概念由于其內(nèi)涵豐富、外延廣泛等原因,很難一步到位,需要分成若干個層次,逐步加深提高。如三角函數(shù)的定義,經(jīng)歷了以下三個循序漸進、不斷深化的過程:(1)用直角三角形邊長的比刻畫的銳角三角函數(shù)的定義;(2)用點的坐標表示的銳角三角函數(shù)的定義;(3)任意角的三角函數(shù)的定義??梢?,三角函數(shù)的定義在三角函數(shù)教學(xué)中可謂重中之重,是整個三角部分的奠基石,它貫穿于與三角有關(guān)的各部分內(nèi)容并起著關(guān)鍵作用。“磨刀不誤砍柴工”,重視概念教學(xué),挖掘概念的內(nèi)涵與外延,有利于學(xué)生理解概念。
3. 尋找新舊概念之間聯(lián)系,掌握概念
數(shù)學(xué)中有許多概念都有著密切的聯(lián)系,如平行線段與平行向量,平面角與空間角,方程與不等式,映射與函數(shù)等,在教學(xué)中應(yīng)善于尋找,分析其聯(lián)系與區(qū)別,有利于學(xué)生掌握概念的本質(zhì)。再如,函數(shù)概念有兩種定義:一種是初中給出的定義,是從運動變化的觀點出發(fā),其中的對應(yīng)關(guān)系是將自變量的每一個取值,與唯一確定的函數(shù)值對應(yīng)起來;另一種高中給出的定義,是從集合、對應(yīng)的觀點出發(fā),其中的對應(yīng)關(guān)系是將原象集合中的每一個元素與象集合中唯一確定的元素對應(yīng)起來。從歷史上看,初中給出的定義來源于物理公式,而函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,函數(shù)可用圖像、表格、公式等表示,所以高中用集合與對應(yīng)的語言來刻畫函數(shù),抓住了函數(shù)的本質(zhì)屬性,更具有一般性。認真分析兩種函數(shù)定義,其定義域與值域的含義完全相同,對應(yīng)關(guān)系本質(zhì)也一樣,只不過敘述的出發(fā)點不同,所以兩種函數(shù)的定義,本質(zhì)是一致的。當(dāng)然,對于函數(shù)概念真正的認識和理解是不容易的,要經(jīng)歷多次接觸的、較長的過程。
4. 運用數(shù)學(xué)概念解決問題,鞏固概念
數(shù)學(xué)概念形成之后,通過具體例子,說明概念的內(nèi)涵,認識概念的“原型”,引導(dǎo)學(xué)生利用概念解決數(shù)學(xué)問題和發(fā)現(xiàn)概念在解決問題中的作用,是數(shù)學(xué)概念教學(xué)的一個重要環(huán)節(jié),此環(huán)節(jié)操作的成功與否,將直接影響學(xué)生的對數(shù)學(xué)概念的鞏固,以及解題能力的形成。例如,當(dāng)我們學(xué)習(xí)完“向量的坐標”這一概念之后,進行向量的坐標運算,提出問題:已知平行四邊形的三個頂點的坐標分別是,試求頂點的坐標。學(xué)生展開充分的討論,不少學(xué)生運用平面解析幾何中學(xué)過的知識(如兩點間的距離公式、斜率、直線方程、中點坐標公式等),結(jié)合平行四邊形的性質(zhì),提出了各種不同的解法,有的學(xué)生運用共線向量的概念給出了解法,還有一些學(xué)生運用所學(xué)過向量坐標的概念,把點的坐標和向量的坐標聯(lián)系起來,巧妙地解答了這一問題。學(xué)生通過對問題的思考,盡快投入到新概念的探索中,從而激發(fā)了學(xué)生的好奇心以及探索和創(chuàng)造欲望,使學(xué)生在參與的過程中產(chǎn)生內(nèi)心的體驗和創(chuàng)造。除此之外,教師通過反例、錯解等進行辨析,也有利于學(xué)生鞏固概念。
總之,要做好數(shù)學(xué)概念的教學(xué),使學(xué)生透徹地、牢固地掌握數(shù)學(xué)概念是提高數(shù)學(xué)教學(xué)質(zhì)量的關(guān)鍵所在,數(shù)學(xué)教師首先應(yīng)該認識到數(shù)學(xué)概念教學(xué)和加強數(shù)學(xué)基礎(chǔ)知識教學(xué),培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的能力,以及發(fā)展學(xué)生邏輯思維和空間想象能力的關(guān)系,在思想上重視它,這樣使我們在教學(xué)時會目的明確、方法正確,既不會造成為概念而教學(xué),也不會在數(shù)學(xué)教學(xué)時顧此失彼。
(作者單位:遼寧省盤錦市盤山縣高級中學(xué) 124100)
點擊下頁還有更多>>>數(shù)學(xué)教育本科畢業(yè)論文范文