數(shù)據(jù)加密技術(shù)論文
數(shù)據(jù)加密技術(shù)論文
隨著計(jì)算機(jī)在社會(huì)各個(gè)領(lǐng)域的廣泛應(yīng)用,人們對(duì)信息系統(tǒng)的依賴程度越來(lái)越高,數(shù)據(jù)庫(kù)在計(jì)算機(jī)和軟件開(kāi)發(fā)領(lǐng)域的作用是至關(guān)重要。下面是小編為大家精心推薦的數(shù)據(jù)加密技術(shù)論文,希望能夠?qū)δ兴鶐椭?/p>
數(shù)據(jù)加密技術(shù)論文篇一
數(shù)據(jù)加密技術(shù)
我們經(jīng)常需要一種措施來(lái)保護(hù)我們的數(shù)據(jù),防止被一些懷有不良用心的人所看到或者破壞。在信息時(shí)代,信息可以幫助團(tuán)體或個(gè)人,使他們受益,同樣,信息也可以用來(lái)對(duì)他們構(gòu)成威脅,造成破壞。在競(jìng)爭(zhēng)激烈的大公司中,工業(yè)間諜經(jīng)常會(huì)獲取對(duì)方的情報(bào)。因此,在客觀上就需要一種強(qiáng)有力的安全措施來(lái)保護(hù)機(jī)密數(shù)據(jù)不被竊取或篡改。數(shù)據(jù)加密與解密從宏觀上講是非常簡(jiǎn)單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對(duì)機(jī)密數(shù)據(jù)進(jìn)行加密和解密。
一:數(shù)據(jù)加密方法
在傳統(tǒng)上,我們有幾種方法來(lái)加密數(shù)據(jù)流。所有這些方法都可以用軟件很容易的實(shí)現(xiàn),但是當(dāng)我們只知道密文的時(shí)候,是不容易破譯這些加密算法的(當(dāng)同時(shí)有原文和密文時(shí),破譯加密算法雖然也不是很容易,但已經(jīng)是可能的了)。最好的加密算法對(duì)系統(tǒng)性能幾乎沒(méi)有影響,并且還可以帶來(lái)其他內(nèi)在的優(yōu)點(diǎn)。例如,大家都知道的pkzip,它既壓縮數(shù)據(jù)又加密數(shù)據(jù)。又如,dbms的一些軟件包總是包含一些加密方法以使復(fù)制文件這一功能對(duì)一些敏感數(shù)據(jù)是無(wú)效的,或者需要用戶的密碼。所有這些加密算法都要有高效的加密和解密能力。
幸運(yùn)的是,在所有的加密算法中最簡(jiǎn)單的一種就是“置換表”算法,這種算法也能很好達(dá)到加密的需要。每一個(gè)數(shù)據(jù)段(總是一個(gè)字節(jié))對(duì)應(yīng)著“置換表”中的一個(gè)偏移量,偏移量所對(duì)應(yīng)的值就輸出成為加密后的文件。加密程序和解密程序都需要一個(gè)這樣的“置換表”。事實(shí)上,80x86 cpu系列就有一個(gè)指令‘xlat’在硬件級(jí)來(lái)完成這樣的工作。這種加密算法比較簡(jiǎn)單,加密解密速度都很快,但是一旦這個(gè)“置換表”被對(duì)方獲得,那這個(gè)加密方案就完全被識(shí)破了。更進(jìn)一步講,這種加密算法對(duì)于黑客破譯來(lái)講是相當(dāng)直接的,只要找到一個(gè)“置換表”就可以了。這種方法在計(jì)算機(jī)出現(xiàn)之前就已經(jīng)被廣泛的使用。
對(duì)這種“置換表”方式的一個(gè)改進(jìn)就是使用2個(gè)或者更多的“置換表”,這些表都是基于數(shù)據(jù)流中字節(jié)的位置的,或者基于數(shù)據(jù)流本身。這時(shí),破譯變的更加困難,因?yàn)楹诳捅仨氄_的做幾次變換。通過(guò)使用更多的“置換表”,并且按偽隨機(jī)的方式使用每個(gè)表,這種改進(jìn)的加密方法已經(jīng)變的很難破譯。比如,我們可以對(duì)所有的偶數(shù)位置的數(shù)據(jù)使用a表,對(duì)所有的奇數(shù)位置使用b表,即使黑客獲得了明文和密文,他想破譯這個(gè)加密方案也是非常困難的,除非黑客確切的知道用了兩張表。
與使用“置換表”相類似,“變換數(shù)據(jù)位置”也在計(jì)算機(jī)加密中使用。但是,這需要更多的執(zhí)行時(shí)間。從輸入中讀入明文放到一個(gè)buffer中,再在buffer中對(duì)他們重排序,然后按這個(gè)順序再輸出。解密程序按相反的順序還原數(shù)據(jù)。這種方法總是和一些別的加密算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個(gè)詞,變換起字母的順序,slient 可以變?yōu)閘isten,但所有的字母都沒(méi)有變化,沒(méi)有增加也沒(méi)有減少,但是字母之間的順序已經(jīng)變化了。
但是,還有一種更好的加密算法,只有計(jì)算機(jī)可以做,就是字/字節(jié)循環(huán)移位和xor操作。如果我們把一個(gè)字或字節(jié)在一個(gè)數(shù)據(jù)流內(nèi)做循環(huán)移位,使用多個(gè)或變化的方向(左移或右移),就可以迅速的產(chǎn)生一個(gè)加密的數(shù)據(jù)流。這種方法是很好的,破譯它就更加困難!而且,更進(jìn)一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機(jī)的方法,這涉及到要產(chǎn)生一系列的數(shù)字,我們可以使用fibbonaci數(shù)列。對(duì)數(shù)列所產(chǎn)生的數(shù)做模運(yùn)算(例如模3),得到一個(gè)結(jié)果,然后循環(huán)移位這個(gè)結(jié)果的次數(shù),將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數(shù)列這種偽隨機(jī)的方式所產(chǎn)生的密碼對(duì)我們的解密程序來(lái)講是非常容易的。
在一些情況下,我們想能夠知道數(shù)據(jù)是否已經(jīng)被篡改了或被破壞了,這時(shí)就需要產(chǎn)生一些校驗(yàn)碼,并且把這些校驗(yàn)碼插入到數(shù)據(jù)流中。這樣做對(duì)數(shù)據(jù)的防偽與程序本身都是有好處的。但是感染計(jì)算機(jī)程序的病毒才不會(huì)在意這些數(shù)據(jù)或程序是否加過(guò)密,是否有數(shù)字簽名。所以,加密程序在每次load到內(nèi)存要開(kāi)始執(zhí)行時(shí),都要檢查一下本身是否被病毒感染,對(duì)與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應(yīng)該保密的,因?yàn)椴《境绦虻木帉?xiě)者將會(huì)利用這些來(lái)破壞別人的程序或數(shù)據(jù)。因此,在一些反病毒或殺病毒軟件中一定要使用加密技術(shù)。
循環(huán)冗余校驗(yàn)是一種典型的校驗(yàn)數(shù)據(jù)的方法。對(duì)于每一個(gè)數(shù)據(jù)塊,它使用位循環(huán)移位和xor操作來(lái)產(chǎn)生一個(gè)16位或32位的校驗(yàn)和 ,這使得丟失一位或兩個(gè)位的錯(cuò)誤一定會(huì)導(dǎo)致校驗(yàn)和出錯(cuò)。這種方式很久以來(lái)就應(yīng)用于文件的傳輸,例如 xmodem-crc。 這是方法已經(jīng)成為標(biāo)準(zhǔn),而且有詳細(xì)的文檔。但是,基于標(biāo)準(zhǔn)crc算法的一種修改算法對(duì)于發(fā)現(xiàn)加密數(shù)據(jù)塊中的錯(cuò)誤和文件是否被病毒感染是很有效的。
二.基于公鑰的加密算法
一個(gè)好的加密算法的重要特點(diǎn)之一是具有這種能力:可以指定一個(gè)密碼或密鑰,并用它來(lái)加密明文,不同的密碼或密鑰產(chǎn)生不同的密文。這又分為兩種方式:對(duì)稱密鑰算法和非對(duì)稱密鑰算法。所謂對(duì)稱密鑰算法就是加密解密都使用相同的密鑰,非對(duì)稱密鑰算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對(duì)稱加密算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數(shù)學(xué)理論上講,幾乎沒(méi)有真正不可逆的算法存在。例如,對(duì)于一個(gè)輸入‘a’執(zhí)行一個(gè)操作得到結(jié)果‘b’,那么我們可以基于‘b’,做一個(gè)相對(duì)應(yīng)的操作,導(dǎo)出輸入‘a’。在一些情況下,對(duì)于每一種操作,我們可以得到一個(gè)確定的值,或者該操作沒(méi)有定義(比如,除數(shù)為0)。對(duì)于一個(gè)沒(méi)有定義的操作來(lái)講,基于加密算法,可以成功地防止把一個(gè)公鑰變換成為私鑰。因此,要想破譯非對(duì)稱加密算法,找到那個(gè)唯一的密鑰,唯一的方法只能是反復(fù)的試驗(yàn),而這需要大量的處理時(shí)間。
rsa加密算法使用了兩個(gè)非常大的素?cái)?shù)來(lái)產(chǎn)生公鑰和私鑰。即使從一個(gè)公鑰中通過(guò)因數(shù)分解可以得到私鑰,但這個(gè)運(yùn)算所包含的計(jì)算量是非常巨大的,以至于在現(xiàn)實(shí)上是不可行的。加密算法本身也是很慢的,這使得使用rsa算法加密大量的數(shù)據(jù)變的有些不可行。這就使得一些現(xiàn)實(shí)中加密算法都基于rsa加密算法。pgp算法(以及大多數(shù)基于rsa算法的加密方法)使用公鑰來(lái)加密一個(gè)對(duì)稱加密算法的密鑰,然后再利用一個(gè)快速的對(duì)稱加密算法來(lái)加密數(shù)據(jù)。這個(gè)對(duì)稱算法的密鑰是隨機(jī)產(chǎn)生的,是保密的,因此,得到這個(gè)密鑰的唯一方法就是使用私鑰來(lái)解密。
我們舉一個(gè)例子:假定現(xiàn)在要加密一些數(shù)據(jù)使用密鑰‘12345’。利用rsa公鑰,使用rsa算法加密這個(gè)密鑰‘12345’,并把它放在要加密的數(shù)據(jù)的前面(可能后面跟著一個(gè)分割符或文件長(zhǎng)度,以區(qū)分?jǐn)?shù)據(jù)和密鑰),然后,使用對(duì)稱加密算法加密正文,使用的密鑰就是‘12345’。當(dāng)對(duì)方收到時(shí),解密程序找到加密過(guò)的密鑰,并利用rsa私鑰解密出來(lái),然后再確定出數(shù)據(jù)的開(kāi)始位置,利用密鑰‘12345’來(lái)解密數(shù)據(jù)。這樣就使得一個(gè)可靠的經(jīng)過(guò)高效加密的數(shù)據(jù)安全地傳輸和解密。
一些簡(jiǎn)單的基于rsa算法的加密算法可在下面的站點(diǎn)找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa三.一個(gè)嶄新的多步加密算法
現(xiàn)在又出現(xiàn)了一種新的加密算法,據(jù)說(shuō)是幾乎不可能被破譯的。這個(gè)算法在1998年6月1日才正式公布的。下面詳細(xì)的介紹這個(gè)算法:
使用一系列的數(shù)字(比如說(shuō)128位密鑰),來(lái)產(chǎn)生一個(gè)可重復(fù)的但高度隨機(jī)化的偽隨機(jī)的數(shù)字的序列。一次使用256個(gè)表項(xiàng),使用隨機(jī)數(shù)序列來(lái)產(chǎn)生密碼轉(zhuǎn)表,如下所示:
把256個(gè)隨機(jī)數(shù)放在一個(gè)距陣中,然后對(duì)他們進(jìn)行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來(lái)產(chǎn)生一個(gè)表,隨意排序的表,表中的數(shù)字在0到255之間。如果不是很明白如何來(lái)做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來(lái)做的。現(xiàn)在,產(chǎn)生了一個(gè)具體的256字節(jié)的表。讓這個(gè)隨機(jī)數(shù)產(chǎn)生器接著來(lái)產(chǎn)生這個(gè)表中的其余的數(shù),以至于每個(gè)表是不同的。下一步,使用"shotgun technique"技術(shù)來(lái)產(chǎn)生解碼表?;旧险f(shuō),如果 a映射到b,那么b一定可以映射到a,所以b[a[n]] = n.(n是一個(gè)在0到255之間的數(shù))。在一個(gè)循環(huán)中賦值,使用一個(gè)256字節(jié)的解碼表它對(duì)應(yīng)于我們剛才在上一步產(chǎn)生的256字節(jié)的加密表。
使用這個(gè)方法,已經(jīng)可以產(chǎn)生這樣的一個(gè)表,表的順序是隨機(jī),所以產(chǎn)生這256個(gè)字節(jié)的隨機(jī)數(shù)使用的是二次偽隨機(jī),使用了兩個(gè)額外的16位的密碼.現(xiàn)在,已經(jīng)有了兩張轉(zhuǎn)換表,基本的加密解密是如下這樣工作的。前一個(gè)字節(jié)密文是這個(gè)256字節(jié)的表的索引?;蛘?,為了提高加密效果,可以使用多余8位的值,甚至使用校驗(yàn)和或者crc算法來(lái)產(chǎn)生索引字節(jié)。假定這個(gè)表是256*256的數(shù)組,將會(huì)是下面的樣子:
crypto1 = a[crypto0][value]
變量'crypto1'是加密后的數(shù)據(jù),'crypto0'是前一個(gè)加密數(shù)據(jù)(或著是前面幾個(gè)加密數(shù)據(jù)的一個(gè)函數(shù)值)。很自然的,第一個(gè)數(shù)據(jù)需要一個(gè)“種子”,這個(gè)“種子” 是我們必須記住的。如果使用256*256的表,這樣做將會(huì)增加密文的長(zhǎng)度?;蛘?,可以使用你產(chǎn)生出隨機(jī)數(shù)序列所用的密碼,也可能是它的crc校驗(yàn)和。順便提及的是曾作過(guò)這樣一個(gè)測(cè)試: 使用16個(gè)字節(jié)來(lái)產(chǎn)生表的索引,以128位的密鑰作為這16個(gè)字節(jié)的初始的"種子"。然后,在產(chǎn)生出這些隨機(jī)數(shù)的表之后,就可以用來(lái)加密數(shù)據(jù),速度達(dá)到每秒鐘100k個(gè)字節(jié)。一定要保證在加密與解密時(shí)都使用加密的值作為表的索引,而且這兩次一定要匹配。
加密時(shí)所產(chǎn)生的偽隨機(jī)序列是很隨意的,可以設(shè)計(jì)成想要的任何序列。沒(méi)有關(guān)于這個(gè)隨機(jī)序列的詳細(xì)的信息,解密密文是不現(xiàn)實(shí)的。例如:一些ascii碼的序列,如“eeeeeeee"可能被轉(zhuǎn)化成一些隨機(jī)的沒(méi)有任何意義的亂碼,每一個(gè)字節(jié)都依賴于其前一個(gè)字節(jié)的密文,而不是實(shí)際的值。對(duì)于任一個(gè)單個(gè)的字符的這種變換來(lái)說(shuō),隱藏了加密數(shù)據(jù)的有效的真正的長(zhǎng)度。
如果確實(shí)不理解如何來(lái)產(chǎn)生一個(gè)隨機(jī)數(shù)序列,就考慮fibbonacci數(shù)列,使用2個(gè)雙字(64位)的數(shù)作為產(chǎn)生隨機(jī)數(shù)的種子,再加上第三個(gè)雙字來(lái)做xor操作。 這個(gè)算法產(chǎn)生了一系列的隨機(jī)數(shù)。算法如下:
unsigned long dw1, dw2, dw3, dwmask;
int i1;
unsigned long arandom[256];
dw1 = {seed #1};
dw2 = {seed #2};
dwmask = {seed #3};
// this gives you 3 32-bit "seeds", or 96 bits total
for(i1=0; i1 < 256; i1++)
{
dw3 = (dw1 + dw2) ^ dwmask;
arandom[i1] = dw3;
dw1 = dw2;
dw2 = dw3;
}
如果想產(chǎn)生一系列的隨機(jī)數(shù)字,比如說(shuō),在0和列表中所有的隨機(jī)數(shù)之間的一些數(shù),就可以使用下面的方法:
int __cdecl mysortproc(void *p1, void *p2)
{
unsigned long **pp1 = (unsigned long **)p1;
unsigned long **pp2 = (unsigned long **)p2;
if(**pp1 < **pp2)
return(-1);
else if(**pp1 > *pp2)
return(1);
return(0);
}
...
int i1;
unsigned long *aprandom[256];
unsigned long arandom[256]; // same array as before, in this case
int aresult[256]; // results go here
for(i1=0; i1 < 256; i1++)
{
aprandom[i1] = arandom + i1;
}
// now sort it
qsort(aprandom, 256, sizeof(*aprandom), mysortproc);
// final step - offsets for pointers are placed into output array
for(i1=0; i1 < 256; i1++)
{
aresult[i1] = (int)(aprandom[i1] - arandom);
}
...
變量'aresult'中的值應(yīng)該是一個(gè)排過(guò)序的唯一的一系列的整數(shù)的數(shù)組,整數(shù)的值的范圍均在0到255之間。這樣一個(gè)數(shù)組是非常有用的,例如:對(duì)一個(gè)字節(jié)對(duì)字節(jié)的轉(zhuǎn)換表,就可以很容易并且非常可靠的來(lái)產(chǎn)生一個(gè)短的密鑰(經(jīng)常作為一些隨機(jī)數(shù)的種子)。這樣一個(gè)表還有其他的用處,比如說(shuō):來(lái)產(chǎn)生一個(gè)隨機(jī)的字符,計(jì)算機(jī)游戲中一個(gè)物體的隨機(jī)的位置等等。上面的例子就其本身而言并沒(méi)有構(gòu)成一個(gè)加密算法,只是加密算法一個(gè)組成部分。
作為一個(gè)測(cè)試,開(kāi)發(fā)了一個(gè)應(yīng)用程序來(lái)測(cè)試上面所描述的加密算法。程序本身都經(jīng)過(guò)了幾次的優(yōu)化和修改,來(lái)提高隨機(jī)數(shù)的真正的隨機(jī)性和防止會(huì)產(chǎn)生一些短的可重復(fù)的用于加密的隨機(jī)數(shù)。用這個(gè)程序來(lái)加密一個(gè)文件,破解這個(gè)文件可能會(huì)需要非常巨大的時(shí)間以至于在現(xiàn)實(shí)上是不可能的。
四.結(jié)論:
由于在現(xiàn)實(shí)生活中,我們要確保一些敏感的數(shù)據(jù)只能被有相應(yīng)權(quán)限的人看到,要確保信息在傳輸?shù)倪^(guò)程中不會(huì)被篡改,截取,這就需要很多的安全系統(tǒng)大量的應(yīng)用于政府、大公司以及個(gè)人系統(tǒng)。數(shù)據(jù)加密是肯定可以被破解的,但我們所想要的是一個(gè)特定時(shí)期的安全,也就是說(shuō),密文的破解應(yīng)該是足夠的困難,在現(xiàn)實(shí)上是不可能的,尤其是短時(shí)間內(nèi)。
點(diǎn)擊下頁(yè)還有更多>>>數(shù)據(jù)加密技術(shù)論文