圖像分割技術(shù)論文
圖像分割技術(shù)論文
圖像分割是圖像處理與計算機視覺的基本問題之一,是圖像處理圖像分析的關(guān)鍵步驟。小編整理了圖像分割技術(shù)論文,歡迎閱讀!
圖像分割技術(shù)論文篇一
圖像分割技術(shù)研究
摘要:圖像分割是圖像處理與計算機視覺的基本問題之一,是圖像處理圖像分析的關(guān)鍵步驟。本文介紹了基于閾值的分割方法和圖像分割的圖像分割性能的評價、應用現(xiàn)狀;最后總結(jié)出圖像分割的發(fā)展趨勢。
關(guān)鍵詞:圖像分割、閾值、邊緣檢測、區(qū)域分割
中圖分類號: TN957.52 文獻標識碼: A
1引言
隨著圖像分割技術(shù)研究的深入,其應用日趨廣泛。凡屬需要對圖像目標進行提取、測量的工作都離不開圖像分割。圖像分割是圖像處理、模式識別和人工智能等多個領域中一個十分重要且又十分困難的問題,是計算機視覺技術(shù)中首要的、重要的關(guān)鍵步驟。圖像分割結(jié)果的好壞直接影響對計算機視覺中的圖像理解?,F(xiàn)有的方法多是為特定應用設計的,有很大的針對性和局限性,到目前為止還不存在一個通用的方法,也不存在一個判斷分割是否成功的客觀標準。因此,對圖像分割的研究目前還缺乏一個統(tǒng)一的理論體系,使得圖像分割的研究仍然是一個極富有挑戰(zhàn)性的課題。
2圖像分割方法
圖像分割(Image Segmentation),簡單地說就是將一幅數(shù)字圖像分割成不同的區(qū)域,在同一區(qū)域內(nèi)具有在一定的準則下可認為是相同的性質(zhì),如灰度、顏色、紋理等。而任何相鄰區(qū)域之間其性質(zhì)具有明顯的區(qū)別。
2.1基于灰度特征的閾值分割方法
閾值分割技術(shù)是經(jīng)典的、流行的圖象分割方法之一,它是用一個或幾個閾值將圖像的灰度級分為幾個部分,認為屬于同一個部分的像素是同一個物體。
這類方法主要包括以下幾種:
(1)單閾值法,用一個全局閾值區(qū)分背景和目標。當一幅圖像的直方圖具有明顯的雙峰時,選擇兩峰之間的谷底作為閾值。
(2)雙閾值法,用兩個閾值區(qū)分背景和目標。通過設置兩個閾值,以防單閾值設置閾值過高或過低,把目標像素誤歸為背景像素,或把背景像素誤歸為目標像素。
(3)多閾值法,當存在照明不均,突發(fā)噪聲等因素或背景灰度變化較大時,整幅圖像不存在合適的單一閾值,單一閾值不能兼顧圖像不同區(qū)域的具體情況,這時可將圖像分塊處理,對每一塊設一個閾值。
2.2 邊緣檢測分割法
基于邊緣檢測技術(shù)可以按照處理的順序分為并行邊緣檢測和串行邊緣檢測兩大類。常見的邊緣檢測方法有:差分法、模板匹配法及統(tǒng)計方法等。由于邊緣灰度變化規(guī)律一般體現(xiàn)為階梯狀或者脈沖狀。邊緣與差分值的關(guān)系可以歸納為兩種情況,其一是邊緣發(fā)生在差分最大值或者最小值處;其二是邊緣發(fā)生在過零處。
2.3基于區(qū)域的分割方法
基于區(qū)域的分割方法利用的是圖像的空間性質(zhì)。該方法認為分割出來的某一區(qū)域具有相似的性質(zhì)。常用的方法有區(qū)域生長法和區(qū)域分裂合并法。該類方法對含有復雜場景或自然景物等先驗知識不足的圖像進行分割,效果較好。
區(qū)域生長方法是把一幅圖像分成許多小區(qū)域開始的,這些初始的小區(qū)域可能是小的鄰域甚至是單個像素,在每個區(qū)域中,通過計算能反映一個物體內(nèi)像素一致性的特征,作為區(qū)域合并的判斷標準。區(qū)域合并的第一步是賦給每個區(qū)域一組參數(shù),即特征。接下來對相鄰區(qū)域的所有邊界進行考查,如果給定邊界兩側(cè)的特征值差異明顯,那么這個邊界很強,反之則弱。強邊界允許繼續(xù)存在,而弱邊界被消除,相鄰區(qū)域被合并。沒有可以消除的弱邊界時,區(qū)域合并過程結(jié)束,圖像分割也就完成。
2.4結(jié)合特定工具的圖像分割技術(shù)
20世紀80年代末以來,隨著一些特殊理論的出現(xiàn)及其成熟,如數(shù)學形態(tài)學、分形理論、模糊數(shù)學、小波分析、模式識別、遺傳算法等,大量學者致力于將新的概念、新的方法用于圖像分割,有效地改善了分割效果。產(chǎn)生了不少新的分割算法。下面對這些算法做一些簡單的概括。
2.4.1基于數(shù)學形態(tài)學的分割算法
分水嶺算法是一種經(jīng)典的借鑒了數(shù)學形態(tài)理論的分割方法。該方法中,將一幅圖像比為一個具有不同高度值的地形,高灰度值處被認為是山脊,底灰度值處被認為是山谷,將一滴水從任一點流下,它會朝地勢底的地方流動,最終聚于某一局部最底點,最后所有的水滴會分聚在不同的吸引盆地,由此,相應的圖像就被分割成若干部分。分水嶺算法具有運算簡單、性能優(yōu)良,能夠較好提取運動對象輪廓、準確得到運動物體邊緣的優(yōu)點。但分割時需要梯度信息,對噪聲較敏感。
2.4.2基于模糊數(shù)學的分割算法
目前,模糊技術(shù)在圖像分割中應用的一個顯著特點就是它能和現(xiàn)有的許多圖像分割方法相結(jié)合,形成一系列的集成模糊分割技術(shù),例如模糊聚類、模糊閾值、模糊邊緣檢測技術(shù)等。
這類方法主要有廣義模糊算子與模糊閾值法兩種分割算法。
(1)廣義模糊算子在廣義模糊集合的范圍內(nèi)對圖像處理,使真正的邊緣處于較低灰度級,但還有一些不是邊緣的像素點的灰度也在較低灰度級中,雖然算法的計算簡明,且邊緣細膩,但得到的邊緣圖會出現(xiàn)斷線問題。
(2)模糊閾值法引入灰度圖像的模糊數(shù)學描述,通過計算圖像的模糊熵來選取圖像的分割閾值,后用閾值法處理圖像得到邊界。
2.4.3基于遺傳算法的分割方法
此算法是受生物進化論思想提出的一種優(yōu)化問題的解決方法,它使用參數(shù)編碼集而不是參數(shù)本身,通過模擬進化,以適者生存的策略搜索函數(shù)的解空間,它是在點群中而不是在單點進行尋優(yōu)。遺傳算法在求解過程中使用隨機轉(zhuǎn)換規(guī)則而不是確定性規(guī)則來工作,它唯一需要的信息是適應值,通過對群體進行簡單的復制、雜交、變異作用完成搜索過程。由于此法能進行能量函數(shù)全局最小優(yōu)化搜索,且可以降低搜索空間維數(shù),降低算法對模板初始位置的敏感,計算時間也大為減少。其缺點是容易收斂于局部最優(yōu)。
2.4.4基于神經(jīng)網(wǎng)絡分割算法
人工神經(jīng)網(wǎng)絡具有自組織、自學習、自適應的性能和非常強的非線性映射能力,適合解決背景知識不清楚、推理規(guī)則不明確和比較復雜的分類問題,因而也適合解決比較復雜的圖像分割問題。原則上講,大部分分割方法都可用 ANN(attificial neural network)實現(xiàn)。ANN 用于分割的研究起步較晚,只有多層前饋NN,多層誤差反傳(BP)NN,自組織NN,Hopfield NN以及滿足約束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了應用。使用一個多層前向神經(jīng)網(wǎng)絡用于圖象分割,輸入層神經(jīng)元的數(shù)目取決于輸入特征數(shù),而輸出層神經(jīng)元的數(shù)目等同于分類的數(shù)目。
2.5圖像分割中的其他方法
前面介紹了4大類圖像分割較常用的方法,有關(guān)圖像分割方法和文獻很多,新方法不斷產(chǎn)生,這些方法有的只對特定的情形有效,有的綜合了幾種方法,放在一起統(tǒng)稱為第5類。
(1)標號法(labeling)是一種基于統(tǒng)計學的方法,這種方法將圖像欲分割成的幾個區(qū)域各以一個不同的標號來表示,用一定的方式對圖像中的每一個像素賦以標號,標號相同的像素就合并成該標號所代表的區(qū)域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通過對能量函數(shù)的動態(tài)優(yōu)化來逼近圖像目標的真實輪廓的
(3)紋理分割,由于新的數(shù)學工具的引入,紋理分割技術(shù)取得了一些進展,張蓬等人將小波分析應用于紋理基元提取。
(4)基于知識的圖像分割方法,直接建立在先驗知識的基礎上,使分割更符合實際圖像的特點。該方法的難度在于知識的正確合理的表示與利用。
3圖像分割性能的評價
圖像分割評價主要有兩個方面的內(nèi)容:一是研究各分割算法在不同情況下的表現(xiàn),掌握如何選擇和控制其參數(shù)設置,以適應不同需要。二是分析多個分割算法在分割同一圖像時的性能,比較優(yōu)劣,以便在實際應用中選取合適的算法。分割評價方法分為分析法和實驗法兩大類。分析法是直接分析分割算法本身的原理及性能,而實驗法是通過對測試圖像的分割結(jié)果來評價算法的。兩種方法各有優(yōu)劣,由于缺乏可靠理論依據(jù),并非所有分割算法都能夠通過分析法分析其性能。每種評價方法都是出于某種考慮而提出來的,不同的評價方法只能反映分割算法性能的某一性能。另一方面,每一種分割算法的性能是由多種因素決定的,因此,有可能需要多種準則來綜合評價。
4圖像分割技術(shù)的發(fā)展趨勢
隨著神經(jīng)網(wǎng)絡、遺傳算法、統(tǒng)計學理論、小波理論以及分形理論等在圖像分割中的廣泛應用,圖像分割技術(shù)呈現(xiàn)出以下的發(fā)展趨勢:(1)多種特征的融合。(2)多種分割方法的結(jié)合。(3)新理論與新方法。
參考文獻
[1] [美]RC岡薩雷斯.數(shù)字圖像處理(第二版)[M].阮秋琦,等譯.北京:電子工業(yè)出版社,2003
[2] 章毓晉.圖像分割[M].北京:科學出版社,2001.
[3] 李弼程,彭天強,彭波等.智能圖像處理技術(shù)[M].北京:電子工業(yè)出版社,2004.
[4] 楊暉,曲秀杰.圖像分割方法綜述[J].電腦開發(fā)與應用。2005,18(3):21-23.
點擊下頁還有更多>>>圖像分割技術(shù)論文