六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 論文大全 > 畢業(yè)論文 > 理學(xué)論文 > 數(shù)學(xué) > 2017研究生數(shù)學(xué)建模優(yōu)秀論文

2017研究生數(shù)學(xué)建模優(yōu)秀論文

時間: 秋梅1032 分享

2017研究生數(shù)學(xué)建模優(yōu)秀論文

  數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣。下文是學(xué)習(xí)啦小編為大家搜集整理的關(guān)于2017研究生數(shù)學(xué)建模優(yōu)秀論文的內(nèi)容,歡迎大家閱讀參考!

  2017研究生數(shù)學(xué)建模優(yōu)秀論文篇1

  淺談數(shù)學(xué)建模在經(jīng)濟預(yù)測中的應(yīng)用

  【摘 要】數(shù)學(xué)模型在經(jīng)濟預(yù)測中應(yīng)用比較廣泛。本文簡述了數(shù)學(xué)模型和數(shù)學(xué)建模概念,數(shù)學(xué)建模思想方法,和數(shù)學(xué)建模方法,并利用數(shù)學(xué)建模方法建立了混沌時間序列模型,且對該模型進行實際應(yīng)用,把此預(yù)測結(jié)果與實際值進行了比較,結(jié)果證明其短期預(yù)測效果更好。

  【關(guān)鍵詞】數(shù)學(xué)建模;混沌;時間序列;經(jīng)濟預(yù)測

  預(yù)測根據(jù)屬性不同,可以分為定性預(yù)測方法和定量預(yù)測方法。定性預(yù)測方法就是以人的經(jīng)驗、事理等主觀判斷為主的預(yù)測方法,對事物未來的性質(zhì)作出描述。因此定性預(yù)測受主觀因素的影響較大,難以對事物發(fā)展作出數(shù)量上的精確度量。定量預(yù)測方法是利用預(yù)測對象的歷史和現(xiàn)狀的數(shù)據(jù),按變量之間的函數(shù)關(guān)系建立數(shù)學(xué)模型,從而計算出預(yù)測對象的觀測值。定量預(yù)測方法較少依賴于人的知識、經(jīng)驗等主觀因素,而是更多地依賴于預(yù)測對象客觀的歷史統(tǒng)計資料,利用電子計算機對數(shù)學(xué)模型進行大量的計算而獲得預(yù)測結(jié)果。因此定量預(yù)測法偏重于預(yù)測事物未來發(fā)展數(shù)量方面的準確描述。本文利用數(shù)學(xué)建模思想方法,建立混沌時間序列預(yù)測模型,對2003-2012年江蘇省GDP這一指標數(shù)值的發(fā)展趨勢進行了預(yù)測,對于制訂相應(yīng)的宏觀調(diào)控政策有著十分重要的意義。

  一、數(shù)學(xué)模型和數(shù)學(xué)建模[1]

  數(shù)學(xué)模型是對現(xiàn)實的對象通過心智活動構(gòu)造出的一種能抓住其重要而且有用的表示,它是指對于現(xiàn)實世界的某一特定對象,為了某個特定目的,做出一些必要的簡化和假設(shè),運用適當(dāng)?shù)臄?shù)學(xué)工具得到的一個數(shù)學(xué)結(jié)構(gòu)。它或者能解釋待定現(xiàn)象的現(xiàn)實性態(tài),或者能預(yù)測對象的未來狀況,或者能提供處理對象的最優(yōu)決策。而建立數(shù)學(xué)模型的全過程稱為數(shù)學(xué)建模[1]。

  二、數(shù)學(xué)建模的思想方法

  數(shù)學(xué)建模的過程是一種創(chuàng)新過程,需要在深入了解實際問題的背景,獲悉大量基礎(chǔ)資料的前提下,弄清問題的性質(zhì)、建模的目的,然后充分發(fā)揮想象力,憑借建模經(jīng)驗、靈感,應(yīng)用相關(guān)知識,創(chuàng)造性地開展工作。數(shù)學(xué)建模方法不同于其他數(shù)學(xué)方法,沒有普遍的準則和技巧,而經(jīng)驗、想象力、洞察力、判斷力及直覺、靈感等在建模過程中起的作用往往比一些具體的數(shù)學(xué)知識更大。數(shù)學(xué)建模實踐的每一步都蘊含著能力上的鍛煉,在調(diào)查研究階段,需要用到觀察能力、分析能力和數(shù)據(jù)處理能力等。在提出假設(shè)時,又需要用到想象力和歸納簡化能力。

  三、數(shù)學(xué)建模的方法

  建立數(shù)學(xué)模型主要采用機理分析及統(tǒng)計分析兩種方法。機理分析法是指人們根據(jù)客觀事物的特性,分析其內(nèi)部的機理,弄清其因果關(guān)系,再在適當(dāng)?shù)暮喕僭O(shè)下,利用合適的數(shù)學(xué)工具得到描述事物特征的數(shù)學(xué)模型。統(tǒng)計分析法是指人們一時得不到事物的特征機理,便通過測試得到一串?dāng)?shù)據(jù),再利用數(shù)理統(tǒng)計知識對這串?dāng)?shù)據(jù)進行處理,從而得到最終的數(shù)學(xué)模型。

  四、混沌時間序列模型

  根據(jù)混沌時間序列理論[3],按照數(shù)學(xué)建模方法,建立混沌時間序列模型[4]。

  對,由相空間重構(gòu)將此序列嵌入一個維空間中,構(gòu)造出維空間軌跡序列:

  現(xiàn)在假定已知,需要預(yù)測一步之后的,因為含有信息的最近的維軌跡點是:

  故需在維空間找出的下一個軌跡點,且:

  其中所包含的新信息就可以作為對的一個預(yù)測,也就是要在維空間中構(gòu)造一個映射使得。

  具體步驟是:在維相空間中的個點中找出距離最近的個點,即先選定一個實數(shù)作為搜索半徑,在中任選個滿足條件的狀態(tài)點。

  因為下一步迭代到,下一步迭代到,下一步迭代到,根據(jù)這個狀態(tài)點的迭代規(guī)律,可利用一個多項式來擬合:

  由于上述采用的是局域方法,因此在局域范圍內(nèi)可以認為是線性的,從而可取為線性的,即由狀態(tài)點的迭代情況,依據(jù)最小二乘擬合一個形如:

  的線性函數(shù)(為單位向量)。

  五、混沌時間序列模型的應(yīng)用和評價

  按混沌時間序列模型預(yù)測方法,江蘇省GDP(2003-2012)的預(yù)測值與實際值比較見表1,數(shù)據(jù)來源于《江蘇省統(tǒng)計年鑒2012》(其單位:億元)為了客觀地說明混沌時間序列是一種用于經(jīng)濟預(yù)測的較好方法,本文又建立了灰色GM(1,1)時間序列預(yù)測模型[5],從而得到如下數(shù)據(jù),見表2(其單位:億元)。

  從表1、2可以看出,與灰色GM(1,1)時間序列預(yù)測模型相比較,利用混沌動力學(xué)原理,建立的混沌時間序列預(yù)測模型具有下列優(yōu)點:

  1、運用混沌時間序列模型所得到的預(yù)測值圍繞實際值上下波動、絕對偏差較小,比用灰色GM(1,1)時間序列預(yù)測模型所得到的預(yù)測值精度高;

  2、混沌時間序列預(yù)測模型形式簡單,在計算機上可實現(xiàn)自動建模、運算并輸出結(jié)果,模型的可操作性較好;

  3、混沌時間序列預(yù)測模型尤其對中短期預(yù)測效果更好,使從少量經(jīng)濟數(shù)據(jù)中預(yù)測經(jīng)濟發(fā)展趨勢成為可能。

  因此運用混沌時間序列預(yù)測模型對經(jīng)濟預(yù)測不僅是可行的,而且結(jié)果較好,為經(jīng)濟管理提供了一種良好的經(jīng)濟預(yù)測方法?;煦鐣r間序列預(yù)測模型還可以應(yīng)用到其它社會領(lǐng)域,并在不斷的應(yīng)用中得到優(yōu)化和改進。

  參考文獻:

  [1]顏文勇.數(shù)學(xué)建模[M].高等教育出版社,2011.

  [2]陸士華,陸君安.混沌動力學(xué)[M].武漢水利電力大學(xué)出版社,1998.

  [3]姜詩章,李宏綱.混沌最鄰近預(yù)測及應(yīng)用[J].數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究,1999,9(2):26-28.

  [4]于景華,田立新.混沌時間序列及其在能源系統(tǒng)中的應(yīng)用[J].江蘇大學(xué)學(xué)報(自然科學(xué)版),2002,23(4):84-86.

  [5]張江凌.灰色預(yù)測法在經(jīng)濟預(yù)測中的應(yīng)用[J].廣西商業(yè)高等??茖W(xué)校學(xué)報,2000,4(17):49-51.

  2017研究生數(shù)學(xué)建模優(yōu)秀論文篇2

  談高中數(shù)學(xué)建模與教學(xué)設(shè)想

  【摘要】:為增強學(xué)生應(yīng)用數(shù)學(xué)的意識,切實培養(yǎng)學(xué)生解決實際問題的能力,分析了高中數(shù)學(xué)建模的必要性,并通過對高中學(xué)生數(shù)學(xué)建模能力的調(diào)查分析,發(fā)現(xiàn)學(xué)生數(shù)學(xué)應(yīng)用及數(shù)學(xué)建模方面存在的問題,并針對問題提出了關(guān)于高中進行數(shù)學(xué)建模教學(xué)的幾點意見。

  【關(guān)鍵詞】:數(shù)學(xué)建?!?shù)學(xué)應(yīng)用意識 數(shù)學(xué)建模教學(xué)

  數(shù)學(xué)建模是從現(xiàn)實問題中建立數(shù)學(xué)模型的過程.在對實際問題本質(zhì)屬性進行抽象提煉后,用簡潔的數(shù)學(xué)符號、表達式或圖形,形成便于研究的數(shù)學(xué)問題,并通過數(shù)學(xué)結(jié)論解釋某些客觀現(xiàn)象,預(yù)測 發(fā)展 規(guī)律,或者提供最優(yōu)策略.它的靈魂是數(shù)學(xué)的運用并側(cè)重于來自于非數(shù)學(xué)領(lǐng)域,但需要數(shù)學(xué)工具來解決的問題.這類問題要把它抽象,轉(zhuǎn)化為一個相應(yīng)的數(shù)學(xué)問題,一般可按這樣的程序:進行對原始問題的分析、假設(shè)、抽象的數(shù)學(xué)加工.數(shù)學(xué)工具、方法、模型的選擇和分析.模型的求解、驗證、再分析、修改假設(shè)、再求解的迭代過程.

  數(shù)學(xué)建模是數(shù)學(xué)學(xué)習(xí)的一種新的方式,它為學(xué)生提供了自主學(xué)習(xí)的空間,有助于學(xué)生體驗數(shù)學(xué)在解決實際問題中的價值和作用,體驗數(shù)學(xué)與日常生活和其他學(xué)科的聯(lián)系,體驗綜合運用知識和方法解決實際數(shù)學(xué)問題的過程,增強應(yīng)用意識,有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展學(xué)生的創(chuàng)新意識和實踐能力.培養(yǎng)學(xué)生的建模意識,教師應(yīng)首先需要提高自己的建模意識.這不僅意味著教師在教學(xué)內(nèi)容要求上的變化,更意味著要努力鉆研如何結(jié)合教材把中學(xué)數(shù)學(xué)知識應(yīng)用于現(xiàn)實生活,注意研究新教材各個章節(jié)要引入哪些模型問題.通過經(jīng)常滲透建模意識,潛移默化,學(xué)生可以從示范建模問題中積累數(shù)學(xué)建模經(jīng)驗,激發(fā)數(shù)學(xué)建模的興趣.建模教學(xué)的目的是為了培養(yǎng)學(xué)生用數(shù)學(xué)知識去觀察、分析、提出和解決問題的能力,同時還應(yīng)該通過解決實際問題(建模過程)加深理解相應(yīng)的數(shù)學(xué)知識,因此數(shù)學(xué)課堂中的建模能力必須與相應(yīng)的數(shù)學(xué)知識結(jié)合起來.

  數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的 科學(xué),在它產(chǎn)生和發(fā)展的 歷史長河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。數(shù)學(xué)的特點不僅在于概念的抽象性、邏輯的嚴密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,自進入21世紀的知識 經(jīng)濟時代以來,數(shù)學(xué)科學(xué)的地位發(fā)生了巨大的變化,它正在從國家經(jīng)濟和科技的后備走到了前沿。經(jīng)濟發(fā)展的全球化、 計算機的迅猛發(fā)展,數(shù)學(xué)理論與方法的不斷擴充使得數(shù)學(xué)已成為當(dāng)代高科技的一個重要組成部分,數(shù)學(xué)已成為一種能夠普遍實施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也成為數(shù)學(xué)教學(xué)的一個重要方面。

  目前國際數(shù)學(xué)界普遍贊同通過開展數(shù)學(xué)建?;顒雍驮跀?shù)學(xué)教學(xué)中推廣使用 現(xiàn)代化技術(shù)來推動數(shù)學(xué) 教育改革。美國、德國、日本等發(fā)達國家普遍都十分重視數(shù)學(xué)建模教學(xué),把數(shù)學(xué)建?;顒訌拇髮W(xué)生向中學(xué)生轉(zhuǎn)移是近年國際數(shù)學(xué)教育發(fā)展的一種趨勢。“我國的數(shù)學(xué)教育在很長一段時間內(nèi)對于數(shù)學(xué)與實際、數(shù)學(xué)與其它學(xué)科的聯(lián)系未能給予充分的重視,因此,高中數(shù)學(xué)在數(shù)學(xué)應(yīng)用和聯(lián)系實際方面需要大力加強。”我國普通高中新的數(shù)學(xué)教學(xué)大綱中也明確提出要切實培養(yǎng)學(xué)生解決實際問題的能力,要求增強應(yīng)用數(shù)學(xué)的意識,能初步運用數(shù)學(xué)模型解決實際問題。

  這些要求不僅符合數(shù)學(xué)本身發(fā)展的需要,也是社會發(fā)展的需要。因此我們的數(shù)學(xué)教學(xué)不僅要使學(xué)生知道許多重要的數(shù)學(xué)概念、方法和結(jié)論,而且要提高學(xué)生的思維能力,培養(yǎng)學(xué)生自覺地運用數(shù)學(xué)知識去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質(zhì)。而數(shù)學(xué)建模通過"從實際情境中抽象出數(shù)學(xué)問題,求解數(shù)學(xué)模型,回到現(xiàn)實中進行檢驗,必要時修改模型使之更切合實際"這一過程,促使學(xué)生圍繞實際問題查閱資料、收集信息、整理加工、獲取新知識,從而拓寬了學(xué)生的知識面和能力。數(shù)學(xué)建模將各種知識綜合應(yīng)用于解決實際問題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識分析問題、解決問題的能力的必備手段之一,是改善學(xué)生學(xué)習(xí)方式的突破口。因此有計劃地開展數(shù)學(xué)建?;顒樱瑢⒂行У嘏囵B(yǎng)學(xué)生的能力,提高學(xué)生的綜合素質(zhì)。

  數(shù)學(xué)建??梢蕴岣邔W(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生不怕吃苦、敢于戰(zhàn)勝困難的堅強意志,培養(yǎng)自律、團結(jié)的優(yōu)秀品質(zhì),培養(yǎng)正確的數(shù)學(xué)觀。具體的調(diào)查表明,大部分學(xué)生對數(shù)學(xué)建模比較感興趣,并不同程度地促進了他們對于數(shù)學(xué)及其他課程的學(xué)習(xí).有許多學(xué)生認為:"數(shù)學(xué)源于生活,生活依靠數(shù)學(xué),平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態(tài)下進行討論,而數(shù)學(xué)建模問題貼近生活,充滿趣味性"; "數(shù)學(xué)建模使我更深切地感受到數(shù)學(xué)與實際的聯(lián)系,感受到數(shù)學(xué)問題的廣泛,使我們對于學(xué)習(xí)數(shù)學(xué)的重要性理解得更為深刻"。數(shù)學(xué)建模能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)進行分析、推理、證明和計算的能力;用數(shù)學(xué)語言表達實際問題及用普通人能理解的語言表達數(shù)學(xué)結(jié)果的能力;應(yīng)用計算機及相應(yīng)數(shù)學(xué)軟件的能力;獨立查找 文獻,自學(xué)的能力,組織、協(xié)調(diào)、管理的能力;創(chuàng)造力、想象力、聯(lián)想力和洞察力。由此,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模知識是很有必要的。

  那么高中的數(shù)學(xué)建模教學(xué)應(yīng)如何進行呢?數(shù)學(xué)建模的教學(xué)本身是一個不斷探索、不斷創(chuàng)新、不斷完善和提高的過程。不同于傳統(tǒng)的教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實驗室為基礎(chǔ)、以學(xué)生為中心、以問題為主線、以培養(yǎng)能力為目標來組織教學(xué)工作。通過教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識與能力。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計好的問題,引導(dǎo)學(xué)生主動查閱文獻資料和學(xué)習(xí)新知識,鼓勵學(xué)生積極開展討論和辯論,主動探索解決之法。教學(xué)過程的重點是創(chuàng)造一個環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,強調(diào)的是獲取新知識的能力,是解決問題的過程,而不是知識與結(jié)果。

  一、在教學(xué)中傳授學(xué)生初步的數(shù)學(xué)建模知識。

  中學(xué)數(shù)學(xué)建模的目的旨在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,掌握數(shù)學(xué)建模的方法,為將來的學(xué)習(xí)、工作打下堅實的基礎(chǔ)。在教學(xué)時將數(shù)學(xué)建模中最基本的過程教給學(xué)生:利用現(xiàn)行的數(shù)學(xué)教材,向?qū)W生介紹一些常用的、典型的數(shù)學(xué)模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應(yīng)研究在各個教學(xué)章節(jié)中可引入哪些數(shù)學(xué)基本模型問題,如儲蓄問題、信用貸款問題可結(jié)合在數(shù)列教學(xué)中。教師可以通過教材中一些不大復(fù)雜的應(yīng)用問題,帶著學(xué)生一起來完成數(shù)學(xué)化的過程,給學(xué)生一些數(shù)學(xué)應(yīng)用和數(shù)學(xué)建模的初步體驗。

  二、培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,增強數(shù)學(xué)建模意識。

  學(xué)生的應(yīng)用意識體現(xiàn)在以下兩個方面:

  一是面對實際問題,能主動嘗試從數(shù)學(xué)的角度運用所學(xué)知識和方法尋求解決問題的策略,學(xué)習(xí)者在學(xué)習(xí)的過程中能夠認識到數(shù)學(xué)是有用的。 二是認識到現(xiàn)實生活中蘊含著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實世界中有著廣泛的應(yīng)用,生活中處處有數(shù)學(xué),數(shù)學(xué)就在他的身邊。

  走進生活,細心觀察,生活處處皆數(shù)學(xué).籃球是一項不錯的運動,打籃球究竟如何提高進球率是每一個籃球愛好者夢寐以求的問題.籃球中有一種進球叫"打板",就是將球打在籃板上,利用球的反彈性使其進入籃筐.實踐證明,這樣的進球率確實相當(dāng)高.于是可以將這個問題,在忽略一切外界條件的情況下,假定:球在籃板上的反射嚴格遵照光的反射原理,即入射角等于反射角.在二維空間(俯視)內(nèi)進行問題的研究.假設(shè)籃球在空中的飛行軌跡是標準拋物線.在此基礎(chǔ)上,嘗試利用二次函數(shù)的性質(zhì)建立相應(yīng)的數(shù)學(xué)模型,就可取得很好的數(shù)學(xué)效果.

  此外,在就餐時,細心了解本校食堂學(xué)生的用餐排隊問題,也可以進行數(shù)學(xué)建模的嘗試:根據(jù)就餐學(xué)生人數(shù)、放學(xué)時間以及食堂工作人員的打菜速度等因素建立數(shù)學(xué)模型,指導(dǎo)食堂開設(shè)合理的窗口數(shù)以及窗口與餐桌的空間距離等問題.這些都是數(shù)學(xué)教師運用數(shù)學(xué)建模進行教學(xué)的良好機會.這樣的問題涵蓋了課本要求的知識點,但同時,在解決這類問題的過程當(dāng)中,不知不覺使學(xué)生提高了動手能力,培養(yǎng)了學(xué)生應(yīng)用數(shù)學(xué)的意識,激發(fā)了學(xué)生學(xué)習(xí)的興趣和動機,有利于提高學(xué)生分析和解決問題的能力,從而真正體現(xiàn)了數(shù)學(xué)建模與課本知識的融合.

  在教學(xué)的過程中,引入數(shù)學(xué)建模時還應(yīng)該注意以下幾點:應(yīng)努力保持自己的"好奇心",開通自己的"問題源",儲備相關(guān)知識.這一過程也可讓學(xué)生從一開始就參與進來,使學(xué)生提高自學(xué)能力后自我探究.

  將數(shù)學(xué)建模思想引入數(shù)學(xué)課堂要結(jié)合實際,這是關(guān)鍵.學(xué)生在課堂中解決的實際問題即建模材料必須經(jīng)過一定的加工,否則有可能過于復(fù)雜,有些問題的數(shù)學(xué)結(jié)論可能偏離生活實際太多,也很正常.

  數(shù)學(xué)課堂中的建模能力必須與相應(yīng)的數(shù)學(xué)知識結(jié)合起來.同時還應(yīng)該通過解決實際問題(建模過程)加深對相應(yīng)的數(shù)學(xué)知識的理解.

  其次,關(guān)于如何培養(yǎng)學(xué)生的應(yīng)用意識:在數(shù)學(xué)教學(xué)和對學(xué)生數(shù)學(xué)學(xué)習(xí)的指導(dǎo)中,介紹知識的來龍去脈時多與實際生活相聯(lián)系。例如,日常生活中存在著“不同形式的等量關(guān)系和不等量關(guān)系”以及“變量間的函數(shù)對應(yīng)關(guān)系”、“變相間的非確切的相關(guān)關(guān)系”、“事物發(fā)生的可預(yù)測性,可能性大小”等,這些正是數(shù)學(xué)中引入“方程”、“不等式”、“函數(shù)”“變量間的線性相關(guān)”、“概率”的實際背景。另外鍛煉學(xué)生學(xué)會運用數(shù)學(xué)語言描述周圍世界出現(xiàn)的數(shù)學(xué)現(xiàn)象。數(shù)學(xué)是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現(xiàn)象。應(yīng)讓學(xué)生養(yǎng)成運用數(shù)學(xué)語言進行交流的習(xí)慣。例如,當(dāng)學(xué)生乘坐出租車時,他應(yīng)能意識到付費與行駛時間或路程之間具有一定的函數(shù)關(guān)系。

  鼓勵學(xué)生運用數(shù)學(xué)建模解決實際問題。首先通過觀察分析、提煉出實際問題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識系統(tǒng)去處理,當(dāng)然這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問題中抽象出我們熟悉的數(shù)學(xué)模型,進而達到用數(shù)學(xué)模型來解決實際問題,使數(shù)學(xué)建模意識成為學(xué)生思考問題的方法和習(xí)慣。通過教師的潛移默化,經(jīng)常滲透數(shù)學(xué)建模意識,學(xué)生可以從各類大量的建模問題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運用數(shù)學(xué)知識進行建模的能力。

  三、在教學(xué)中注意聯(lián)系相關(guān)學(xué)科加以運用

  在數(shù)學(xué)建模教學(xué)中應(yīng)該重視選用數(shù)學(xué)與物理、化學(xué)、生物、美學(xué)等知識相結(jié)合的跨學(xué)科問題和大量與日常生活相聯(lián)系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數(shù)學(xué)問題,從其它學(xué)科中選擇應(yīng)用題,通過構(gòu)建模型,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)工具解決該學(xué)科難題的能力。例如,高中生物學(xué)科以描述性的語言為主,有的學(xué)生往往以為學(xué)好生物學(xué)是與數(shù)學(xué)沒有關(guān)系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數(shù)學(xué)上的排列與組合來分析減數(shù)分裂過程配子的基因組成;也不會用數(shù)學(xué)上的概率的相加、相乘原理來解決一些遺傳病機率的 計算等等。這些需要教師在平時相應(yīng)的課堂內(nèi)容教學(xué)中引導(dǎo)學(xué)生進行數(shù)學(xué)建模。因此我們在教學(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識的一個不可忽視的途徑。又例如教了正弦函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)寫出物理中振動圖象或交流圖象的數(shù)學(xué)表達式。

  建模教學(xué)的目的是為了培養(yǎng)學(xué)生用數(shù)學(xué)知識去觀察、分析、提出和解決問題的能力,展示學(xué)生多方面的數(shù)學(xué)思維能力,培養(yǎng)其創(chuàng)新意識,讓學(xué)生體會發(fā)現(xiàn)問題、探究問題、解決問題的快樂.數(shù)學(xué)建模是數(shù)學(xué)學(xué)習(xí)的一種新的方式,它為學(xué)生提供了自主學(xué)習(xí)的空間,有助于學(xué)生體驗數(shù)學(xué)在解決實際問題中的價值和作用,體驗數(shù)學(xué)與日常生活和其他學(xué)科的聯(lián)系,體驗綜合運用知識和方法解決實際問題的過程,增強應(yīng)用意識.高中數(shù)學(xué)課程中的數(shù)學(xué)建模與數(shù)學(xué)探究的不同之處是它更側(cè)重于非數(shù)學(xué)領(lǐng)域需用數(shù)學(xué)工具來解決的問題.數(shù)學(xué)建模的能力是伴隨著數(shù)學(xué)建模的學(xué)習(xí)和數(shù)學(xué)建模的能力逐漸形成的,是伴隨著對數(shù)學(xué)理解和感悟的加深,數(shù)學(xué)意識的增強、綜合知識的拓寬逐漸提高的.不是懂?dāng)?shù)學(xué)就會建模,也不可能拋出個實際問題,搞一次建模活動即一蹴而就,更不能不切實際地指望在高三畢業(yè)前緊張的教學(xué)期間將數(shù)學(xué)一網(wǎng)打盡.而是在數(shù)學(xué)建模的教學(xué)上應(yīng)該從高一抓起,從平時的教學(xué)抓起,從新教材的各個模塊抓起.

  最后,為了培養(yǎng)學(xué)生的建模意識,中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué) 科學(xué)的 發(fā)展 歷史和發(fā)展動態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識應(yīng)用于現(xiàn)實生活。中學(xué)教師只有通過對數(shù)學(xué)建模的系統(tǒng)學(xué)習(xí)和研究,才能準確地的把握數(shù)學(xué)建模問題的深度和難度,更好地推動中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。

  【 參考 文獻】

  【1】《問題解決的數(shù)學(xué)模型方法》北京師范大學(xué)出版社,1999.8

  【2】普通高中數(shù)學(xué)課程標準(實驗),人民 教育出版社,2003.4

  【3】《數(shù)學(xué)建?;A(chǔ)》清華大學(xué)出版社,2004.6

  【4】《初等數(shù)學(xué)建?!匪拇ù髮W(xué)出版社。2004.12

>>>下一頁更多精彩的“2017研究生數(shù)學(xué)建模優(yōu)秀論文”

3298024