化學工程應用畢業(yè)論文
化學工程應用畢業(yè)論文
隨著科技負效應的顯現(xiàn),工程倫理越來越受的人們的重視?;瘜W工程有著與其他工程不同的特點。下面是學習啦小編為大家整理的化學工程應用畢業(yè)論文,供大家參考。
化學工程應用畢業(yè)論文篇一
《 化學工程中計算流體力學應用分析 》
摘要:計算流體力學是以多種計算方程為基礎,在多種化學反應設備中進行能量、質(zhì)量和動量的綜合計算,分析出不同守恒定律中,這些變量的主控形式和變化規(guī)律,從而優(yōu)化工程設計和工藝設備,提高化學反應中正向變化的進行,提高熱量交換和原材料的反應速率等。從化學工程經(jīng)濟效益的角度分析,有利于工程成本的節(jié)約,提升了經(jīng)濟回報。文章計算流體力學的基本原理進行分析,并總結了其砸你化學工程中攪拌、熱交換、精餾塔和化學反應工程的具體應用。
關鍵詞:計算流體力學;求解;基本原理;化學工程;應用
化學工程在我國具有較長的研究與應用歷程,并在實際的生產(chǎn)與生活中取得到巨大的應用成效,不僅能夠供給正常的生活需求,同時根據(jù)新材料的開發(fā),能夠滿足現(xiàn)代型環(huán)保材料的使用。在化學工程中,較多的反映環(huán)境和反應機制都是在溶液中進行的,具有質(zhì)量守恒和熱量守恒定律的應用。而這種質(zhì)量與能量的關系正是計算流體力學的主要原理。通過對實際應用環(huán)境和原理的分析,能夠優(yōu)化工程設計和工藝改進,提高化學工程的生產(chǎn)效率。
1計算流體力學在化學工程中的基本原理
計算流體力學簡稱CFD,是通過數(shù)值計算方法來求解化工中幾何形狀空間內(nèi)的動量、熱量、質(zhì)量方程等流動主控方程,從而發(fā)現(xiàn)化工領域中各種流體的流動現(xiàn)象和規(guī)律,其主要以化學方程式中的動量守恒定律、能量守恒定律及質(zhì)量守恒方程為基礎。一般情況下,計算流體力學的數(shù)值計算方法主要包括數(shù)值差分法、數(shù)值有限元法及數(shù)值有限體積法,其也是一門多門學科交叉的科目,計算流體力學不僅要掌握流體力學的知識,也要掌握計算幾何學和數(shù)值分析等學科知識,其涉及面廣。
針對計算流體力學的真實模擬,其主要目的是對流體流動進行預測,以獲得流體流動的信息,從而有效控制化工領域中的流體流動。隨著信息技術的發(fā)展,市場上也出現(xiàn)了計算流體力學軟件,其具有對流場進行分析、計算、預測的功能,計算流體力學軟件操作簡單,界面直觀形象,有利于化學工程師對流體進行準確的計算。
2計算流體力學砸你化學工程中的實際應用
2.1在攪拌中的應用分析
在攪拌的化學反應中,反映介質(zhì)之間的流動性比較復雜,依據(jù)傳統(tǒng)的計算形式根本無法解決,并在化學試劑在攪拌中存在不均勻擴散的特點,在湍流的形式中能量的分布狀況也存在著空間特點。若是依據(jù)實驗手段測得反映中物質(zhì)、能量和質(zhì)量的變化規(guī)律,其得出的結構往往存在較差時效性,實驗騙差加大。
通過對二維計算流體力學的應用,能夠?qū)嚢柚辛黧w的形式進行模擬,并進行質(zhì)量、能量等數(shù)據(jù)的驗證。但是流體的變化,不僅與化學試劑的濃度、減半速度有關,還與時間、容器的形狀等有著之間的聯(lián)系,需要建立三維空間模擬形式進行計算流行力學。隨著科學技術和研究水平的提高,在通過借助多普勒激光測速儀后,已經(jīng)對三維計算形式有了較大的突破,這對于化工工程中原料的有效應用和工程成本的減低具有促進的作用,但是在三維計算流體力學中還存在一定的缺陷,需要在今后的研究中不斷的完善。
2.2CFD在化學工程換熱器中的應用分析
換熱器是化學工程中主要的應用設備,通過管式等換熱器、板式換熱器、冷卻塔和再沸器等的應用,能夠有效的控制化學試劑在反應中的溫度變化。其中根據(jù)換熱器的形式不同,計算流體力學的方式也就不同。在管式換熱器中主要是通過流體湍流速度的改變,增加換熱速率的。在板式換熱器中是通過加大流體的接觸面積,提高換熱效率的。而在冷卻塔和再沸器中,熱量交換的形式更為復雜,但是卻群在重復性換熱的特點,增加了換熱的時間,提高了換熱的效果。從總體上分析,計算流量力學中,需要對溫度變化、流體的速度變化、熱交換面積變化和時間變化進行分析。通過CFD計算流體力學的應用,能夠計算出不同設備的熱交換效果,并根據(jù)生產(chǎn)的實際需求進行換熱器的選擇使用。
2.3在精餾塔中的應用
CFD已成為研究精餾塔內(nèi)氣液兩相流動和傳質(zhì)的重要工具,通過CFD模擬可獲得塔內(nèi)氣液兩相微觀的流動狀況。在板式塔板上的氣液傳質(zhì)方面,Vi-tankar等應用低雷諾數(shù)的k-ε模型對鼓泡塔反應器的持液量和速度分布進行了模擬,在塔氣相負荷、塔徑、塔高和氣液系統(tǒng)的參數(shù)大范圍變化的情況下,模擬結果和現(xiàn)實的數(shù)據(jù)能夠較好的吻合。
Vivek等以歐拉-歐拉方法為基礎,充分考慮了塔壁對塔內(nèi)流體的影響,用CFD商用軟件FLUENT模擬計算了矩形鼓泡塔內(nèi)氣液相的分散性能,以及氣泡數(shù)量、大小和氣相速度之間的關系,取得了很好的效果。在填料塔方面,Petre等建立了一種用塔內(nèi)典型微型單元(REU)的流體力學性質(zhì)來預測整塔的流體力學性質(zhì)的方法,對每一個單元用FLUENT進行了模擬計算,發(fā)現(xiàn)塔內(nèi)的主要能量損失來自于填料內(nèi)的流體噴濺和流體與塔壁之間的碰撞,且用此方法預測了整塔的壓降。
Larachi等發(fā)現(xiàn)流體在REU的能量損失(包括流體在填料層與層之間碰撞、與填料壁的碰撞引起的能量損失等)以及流體返混現(xiàn)象是影響填料效率的主要因素,而它們都和填料的幾何性質(zhì)相關,因此用CFD模擬計算了單相流在幾種形狀不同的填料中流動產(chǎn)生的壓降,為改進填料提供了理論依據(jù)。CFD模擬精餾塔內(nèi)流體流動也存在一些不足,如CFD模擬規(guī)整填料塔內(nèi)流體流動的結果與實驗值還有一定的偏差。這是由于對于許多問題所應用的數(shù)學模型還不夠精確,還需要加強流體力學的理論分析和實驗研究。
2.4CFD在化學反應工程中的應用研究
在化學反應工程中,反應物和生成物的化學反應速率與反應器、溫度和壓力等有著較大的聯(lián)系,在實際的反應中可以利用計算流體力學進行數(shù)據(jù)的獲取。但是這數(shù)據(jù)的獲取具有一定的溫度限制,當反應中溫度過大,就會造成分子的劇烈運動,其運動軌跡的變化規(guī)律就會異常,在利用計算流體力學的模型計算中,計算數(shù)據(jù)與實際情況會發(fā)生較大的偏差。由于高溫中分子的運動軌跡和運動速度難以獲取,在計算流體力學的實際計算中,就要借助FLUENT進行三維建型,并利用測速反應器進行速度的測量,通過綜合的比較分析,利用限元法進行數(shù)據(jù)的計算??梢缘贸霾煌h(huán)境下的反應器的流線、反應器內(nèi)部的濃度梯度及溫度梯度。通過CFD軟件預測反應器的速度、溫度及壓力場,可以更進一步理解化學反應工程中的聚合過程,詳細、準確的數(shù)據(jù)可以優(yōu)化化學反應中的操作參數(shù)。
3結束語
計算流體力學對于化學工程的應用具有實際意義,并在經(jīng)濟效益的提高上具有重要的價值,在近幾年,化學工程技術人員不斷的計算流體力學中展開研究,以二維空間計算和模擬為基礎,不斷的完善三維空間的流量計算,并得出了一系列的流體流動規(guī)律。根據(jù)計算流體力學在化學工程中的廣泛應用,在今后的化學工程發(fā)展中,應加強此類學科的教學與延伸,提供出更有效的反應設備和工藝操作。
參考文獻
[1]余金偉,馮曉鋒.計算流體力學發(fā)展綜述[J].現(xiàn)代制造技術與裝備,2013(06).
[2]舒長青,王友欣.計算流體力學在化學工程中的應用[J].化工管理,2014(06).
化學工程應用畢業(yè)論文篇二
《 能源化學工程專業(yè)化工熱力學教學思考 》
[摘要]《化工熱力學》是能源化學工程專業(yè)一門理論性和邏輯性較強的專業(yè)基礎課,文章闡述了作者在《化工熱力學》課程教學過程中如何提高學生對學習本課程興趣的教學實踐和教學體會。通過明確教學內(nèi)容和教學主線,改變傳統(tǒng)的單一的課堂教學,將課堂教學與學科動態(tài)及工程實踐密切結合,激發(fā)學生學習興趣,培養(yǎng)學生自主學習能力和工程意識,以滿足培養(yǎng)能源化學工程領域領軍人物的要求。
[關鍵詞]化工熱力學;能源化學工程;教學實踐;教學體會
化工熱力學是化工類學生的專業(yè)必修課程之一,主要講述熱力學定律在化學工程領域的應用,包括化工過程中各種形式的能量之間相互轉換規(guī)律及過程趨近平衡的極限條件等。它是培養(yǎng)學生分析和解決實際化工問題思維方法的重要專業(yè)理論基礎課[1-3]。然而該課程的課程內(nèi)容抽象、計算繁瑣,學生感到非常難學又缺乏實際應用,在課程學習過程中學生產(chǎn)生恐懼和厭學心理,達不到良好的教學效果,因此,我們對該課程的教學內(nèi)容和教學方法進行一些改革和嘗試,希望激發(fā)學生學習的興趣,進而更好地掌握這門課程,為后續(xù)專業(yè)課程的學習夯實基礎。
武漢大學2013年新開設的能源化學工程專業(yè)是由1958年原武漢水利電力學院開辦的“電廠化學”專業(yè)發(fā)展而來,主要面向電力行業(yè)及高效潔凈能源領域(包括超臨界火電、核電、生物質(zhì)能、氫能、新型化學電源等),培養(yǎng)掌握化學與化工基礎理論及能源化學專業(yè)知識和技能的未來行業(yè)發(fā)展的領軍人物。
目前,本專業(yè)主要有水處理、材料腐蝕與防護、化學監(jiān)督與控制、能源化學四個主要研究方向。為了適應學校對新專業(yè)發(fā)展和一流學科建設的要求,2015年在本專業(yè)大三學生中新增設了《化工熱力學》這門化工類專業(yè)的專業(yè)基礎課程。如何調(diào)動學生的課堂積極性,培養(yǎng)學生的創(chuàng)新能力,夯實學生的專業(yè)基礎,使他們在54學時的學習過程中理解并掌握本門課程的基本概念,并且將抽象的理論與實際的能源化學過程聯(lián)系起來是本課程的核心教學任務。本文結合我校能源化學工程專業(yè)的培養(yǎng)目標,淺談《化工熱力學》的教學體會,著重對教學方式進行了探索和實踐,為培養(yǎng)能源化學工程領域的領軍人物奠定基礎。
1明確教學內(nèi)容與課程主線
結合我?!痘崃W》課程以工程應用為中心、專業(yè)研究方向覆蓋面廣等特點,我們選用了朱自強等編著、化學工業(yè)出版社出版的《化工熱力學》作為教材[4],同時,也鼓勵學生使用部分參考教材(《化工熱力學》,馮新等編,2008;《化工熱力學(第二版)》,陳鐘秀等編,2000;《化工熱力學導論(原著第七版)》,J.M.史密斯等編,劉洪來等譯,2007)[5-7]?;崃W發(fā)展時間較長,已形成較完整的知識體系,如何在54學時內(nèi)有效地把關鍵知識點教授給學生是本課程教學實踐的關鍵。
由于本專業(yè)學生在大二《物理化學》課程中已經(jīng)系統(tǒng)學習了理想氣體相關的狀態(tài)方程及其應用,因此在本課程教學中不再贅述,而是重點介紹工程實際應用較多的二參數(shù)狀態(tài)方程、化工熱力學分析、溶液熱力學、流體相平衡和化學反應平衡等。在教學實踐中,首先,詳細分析《化工熱力學》教材結構,圍繞主線內(nèi)容合理編排知識點;其次,建立好各知識點之間的邏輯關系,讓學生在大腦中建立化工熱力學框架圖;最后,根據(jù)能源化學工程專業(yè)的需要,適當刪減補充了教材內(nèi)容,結合學科動態(tài),增強化工熱力學的應用能力,如燃料電池開路電壓的計算、水/二氧化碳共電解制合成氣過程中氣體組成的計算等。
2改變單一課堂教學模式,培養(yǎng)學生自主學習能力
化工熱力學課程設計的公式多而繁雜,學生在開始學習階段容易產(chǎn)生恐懼厭學心理,傳統(tǒng)的單一課堂教學模式具有“教師主導學生學習”的特點,與本課程“教師引導學生學習”的教學目的存在較大偏差。因此,應改變傳統(tǒng)單一課堂講授模式,充分采用“啟發(fā)式”和“參與式”相結合的教學方法。
首先,教師在課前預習階段設疑(提出問題),促使學生思考,復習舊知識,預習新知識;其次,教師在教學實踐過程中采用多媒體和板書相結合的教學方式解疑(解決問題),并通過對例題和習題的講解加深學生對化工熱力學原理、方法和應用的理解,同時,教學過程中應避免陷于抽象的說教和枯燥的公式推導之中,重點講述化工熱力學知識點的應用條件和物理意義;最后,課堂教學結束后,教師主動與學生面對面交流答疑(探討問題),并設置思考題讓學生查閱相關資料。通過“設疑—解疑—答疑”的漸進式教學方法達到對關鍵知識點舉一反三的目的,同時,吸引學生注意力,培養(yǎng)學生自主學習能力,提高學生學習的積極性和主動性。
3課堂教學與工程實踐密切結合,培養(yǎng)學生初步的工程觀點
化工熱力學由于理論性較強、基本概念多且抽象,而且本科生在學習過程中接觸科研課題及工程實踐的機會較少,將課堂教學內(nèi)容與科研課題及工程實踐緊密結合起來,建立“以應用為中心”、“探究式”的特色教學模式,緊密聯(lián)系我校在能源化學工程領域(特別是超臨界火電、核電、生物質(zhì)能、氫能、新型化學電源等方面)開發(fā)利用的化學工程實際問題,把學科前沿領域的科研成果帶入課堂,可以使他們強化科研思想、激發(fā)聽課興趣、培養(yǎng)創(chuàng)新能力;同時,可以讓學生獲取利用化工熱力學基本原理解決工程實際問題提供思路和方法,培養(yǎng)學生初步的工程觀點。
4考核方式方法研究
傳統(tǒng)的期末一張考卷為準的考試方式不利于學生能力的培養(yǎng),也不能全面地體現(xiàn)學生對所學知識的掌握程度,為了更加系統(tǒng)全面地評價學生對課程內(nèi)容的認識情況,我們對課程的考核方式方法進行了改革探索。目前,課程成績總評包括平時成績和期末成績兩部分,其中平時成績包括學生的課堂綜合表現(xiàn)、課程預習、作業(yè)三個部分,各占10%;期末考試采用開卷方式考試,考試的題目偏重于對知識點的理解和其在能源化學過程中的應用。然而由于該課程的課程內(nèi)容抽象、計算繁瑣,教學過程中發(fā)現(xiàn)仍有部分學生存在畏懼厭學心理,因此,在今后的教學實踐中應考慮進一步激發(fā)學生的學習興趣,增強學生的主觀能動性,在課堂教學中引入分組討論,開展導向性的專題研究,將課程內(nèi)容與能源化學過程(特別是學科動態(tài))相結合,培養(yǎng)學生查閱資料和分工協(xié)作的能力,為學生下一步學習專業(yè)課程夯實基礎。
5結束語
在《化工熱力學》課程的教學實踐和嘗試中,首先要明確教學內(nèi)容與主線,打破單一的學生被動聽講的模式,理論聯(lián)系實際應用,調(diào)動學生學習的積極性和主動性,激發(fā)學生對教學內(nèi)容的興趣,并且在教學的過程中對教學方法進行改革創(chuàng)新,因材施教,為學生下一步學習更專業(yè)的能源化學工程知識和從事新能源行業(yè)工作奠定扎實的基礎。
參考文獻
[1]陸小華,馮新,吉遠輝,等.迎接化工熱力學的第二個春天[J].化工高等教育,2008,3:19-21.
[2]梁浩,劉惠茹,王春花.《化工熱力學》教學實踐與嘗試[J].廣東化工,2010,37(1):157-158.
[3]李興揚,唐定興,沈鳳翠,等.化工熱力學教學改革與體驗[J].化工高等教育,2011,3:71-73.
[4]朱自強,吳有庭.化工熱力學(第三版)[M].北京:化學工業(yè)出版社,2009.
[5]馮新,宣愛國,周彩榮,等.化工熱力學[M].北京:化學工業(yè)出版社,2008.
[6]陳鐘秀,顧飛燕,胡望明.化工熱力學(第二版)[M].北京:化學工業(yè)出版社,2000.
[7]史密斯JM,范內(nèi)斯HC,阿博特MM,等編;劉洪來,陸小華,陳新志,等譯.化工熱力學導論(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化學工業(yè)出版社,2007.
有關化學工程應用畢業(yè)論文推薦: