如何培養(yǎng)數(shù)學(xué)靈感
如何培養(yǎng)數(shù)學(xué)靈感
數(shù)學(xué)靈感是人腦對(duì)數(shù)學(xué)對(duì)象結(jié)構(gòu)關(guān)系的一種突發(fā)性領(lǐng)悟。在解答數(shù)學(xué)難題時(shí),通常會(huì)遇到這樣的情況:盡管從多角度、用各種方法去探索,還是百思不得其解。如何培養(yǎng)數(shù)學(xué)靈感呢?本文是小編整理培養(yǎng)數(shù)學(xué)靈感的資料,僅供參考。
如何培養(yǎng)數(shù)學(xué)靈感
我國(guó)著名科學(xué)家錢學(xué)森說(shuō):“靈感,也就是人在科學(xué)或藝術(shù)創(chuàng)作中的高潮,突然出現(xiàn)的、瞬時(shí)即逝的短暫思維過(guò)程.”唯物論者也承認(rèn)靈感,但它不是上帝的恩賜,而是人們?cè)趯?shí)踐活動(dòng)中逐步形成或培養(yǎng)出來(lái)的一種不同常人的高效率、大跨度創(chuàng)造性思維的表現(xiàn).靈感是緊張的創(chuàng)造性活動(dòng)和長(zhǎng)期艱苦勞動(dòng)的結(jié)果.
數(shù)學(xué)靈感是人腦對(duì)數(shù)學(xué)對(duì)象結(jié)構(gòu)關(guān)系的一種突發(fā)性的領(lǐng)悟.在解答數(shù)學(xué)難題時(shí),通常會(huì)遇到這樣的情況:盡管從多角度、用各種方法去進(jìn)行探索,但百思不得其解.可正在“山窮水盡疑無(wú)路”之際,靈感出現(xiàn)了,從而創(chuàng)造了“柳暗花明又一村”的美的境界.
靈感與創(chuàng)造思維、靈感與數(shù)學(xué)發(fā)現(xiàn)究竟有何聯(lián)系?我們可看看下面幾位數(shù)學(xué)家的數(shù)學(xué)靈感與數(shù)學(xué)發(fā)現(xiàn)的情況.
法國(guó)數(shù)學(xué)家笛卡兒,早就有把相互獨(dú)立的代數(shù)與幾何結(jié)合起來(lái)的愿望,經(jīng)過(guò)長(zhǎng)時(shí)期的思考,但未找到合適的方法.1619年隨軍服務(wù)時(shí)他仍在思考.11月9日,在多瑙河畔的諾伊堡,他幾天來(lái)整日沉迷在思考之中而不得其解,入睡后連作數(shù)夢(mèng),夢(mèng)中迷迷糊糊地想到引入直角坐標(biāo)系的方法.第二天,也即是11月10日清晨,醒后立即將夢(mèng)中所得加以整理,終于創(chuàng)造了解析幾何學(xué),笛卡爾獲得了成功,但他醞釀時(shí)間為1617~1619年,約為兩年的時(shí)間.
法國(guó)著名數(shù)學(xué)家龐加萊在談到他發(fā)現(xiàn)富克斯函數(shù)的變換方法時(shí)回憶說(shuō):“1880年有一次我離開當(dāng)時(shí)居住的卡昂去作一次由礦業(yè)學(xué)校主辦的地質(zhì)考察旅行.旅途的奔波使我忘掉了我的數(shù)學(xué)工作,抵達(dá)庫(kù)特塞斯后,我們乘公共馬車到各處去轉(zhuǎn)轉(zhuǎn),正當(dāng)我跨上踏板的瞬間,腦子里突然出現(xiàn)了一個(gè)想法,即我曾用來(lái)定義富克斯函數(shù)的諸變換跟非歐幾何中的諸變換是一致的.”龐加萊回到住址后,馬上把這一結(jié)果加以證明.這是在長(zhǎng)時(shí)間緊張工作之后,思想放松時(shí)靈感的突然閃現(xiàn),是經(jīng)過(guò)了約一年時(shí)間的苦思之后才獲得成功的.
被稱為數(shù)學(xué)王子的高斯為證明某一算術(shù)定理,曾苦思冥想達(dá)兩年之久,后來(lái)突然得到一個(gè)想法,使他獲得成功.高斯回憶說(shuō):“終于在兩天前我成功了……像閃電一樣,謎一下解開了.我自己也說(shuō)不清楚是什么導(dǎo)線把原先的知識(shí)和我成功的東西連接起來(lái).”盡管解開這個(gè)謎的想法是突然來(lái)的,但高斯本人經(jīng)過(guò)兩年的艱苦努力才為這個(gè)成功的到來(lái)做好了準(zhǔn)備.
由以上對(duì)三位數(shù)學(xué)家數(shù)學(xué)靈感的出現(xiàn)而導(dǎo)致數(shù)學(xué)發(fā)現(xiàn)的描述,可以看出這種在長(zhǎng)時(shí)期持續(xù)勞動(dòng)后的某時(shí)刻出現(xiàn)的“突然領(lǐng)悟”是一種非邏輯的高層次的創(chuàng)造活動(dòng),亦即靈感思維活動(dòng).
靈感是不能靠偶然的機(jī)遇、守株待兔式的消極等待可以得到的.必須是執(zhí)著追求、鍥而不舍、百折不撓,才能有成功的一天.所謂“觸景生情”“靈機(jī)一動(dòng)”“眉頭一皺,計(jì)上心來(lái)”,都是經(jīng)過(guò)長(zhǎng)期堅(jiān)持不懈地創(chuàng)造性勞動(dòng)而“偶然得之”的.巴斯加說(shuō):“機(jī)遇只偏愛有準(zhǔn)備的頭腦.”恰恰道出了此中的真諦.
怎么培養(yǎng)數(shù)學(xué)靈感
教學(xué)過(guò)程中,經(jīng)常有學(xué)生會(huì)問(wèn)這么一個(gè)問(wèn)題:老師,當(dāng)你拿到一道題目的時(shí)候,為什么你能夠想到用這個(gè)方法?
其實(shí),這是關(guān)于數(shù)學(xué)靈感的一個(gè)話題。寫作,搞藝術(shù)經(jīng)常講到靈感;同樣在數(shù)學(xué)學(xué)習(xí)過(guò)程中,靈感也非常重要,是分析和解決實(shí)際問(wèn)題能力的一個(gè)重要手段,對(duì)于開發(fā)學(xué)生的智力是一個(gè)不可忽視的因素。因此,在數(shù)學(xué)教學(xué)中,重視靈感能力的培養(yǎng),對(duì)培養(yǎng)學(xué)生的創(chuàng)新精神和創(chuàng)造能力是至關(guān)重要的。
數(shù)學(xué)是一門思維學(xué)科,在我們目前的數(shù)學(xué)教育中,如何設(shè)計(jì)、滲透數(shù)學(xué)的靈感教育是一項(xiàng)重要的改革,我們要以培養(yǎng)學(xué)生的創(chuàng)造性思維為主,把傳授知識(shí)和訓(xùn)練思維能力統(tǒng)一起來(lái),培養(yǎng)適應(yīng)社會(huì)需求的創(chuàng)造性人才。
通過(guò)一段時(shí)間的數(shù)學(xué)的研究性學(xué)習(xí),針對(duì)”數(shù)學(xué)靈感的培養(yǎng)”這一課題進(jìn)行資料的查找與探討總結(jié)。我們發(fā)現(xiàn),靈感真的是學(xué)習(xí)的關(guān)鍵元素,只有以靈感作為學(xué)習(xí)的基礎(chǔ)與前提,才能更好地開拓自己的思維,挖掘出自己內(nèi)在所具有的天賦。因此,我們?cè)谡n堂內(nèi)外應(yīng)注重學(xué)習(xí)數(shù)學(xué)靈感的培養(yǎng)。我們可以從下列各個(gè)方面入手來(lái)培養(yǎng)數(shù)學(xué)靈感:
1、 重視數(shù)學(xué)基本問(wèn)題和基本方法的牢固掌握和應(yīng)用,以形成并豐富數(shù)學(xué)知識(shí)組塊。
靈感不是靠“機(jī)遇”,直覺(jué)的獲得雖然是有偶然性,但決不是無(wú)緣無(wú)故的憑空臆想,而是以扎實(shí)的知識(shí)為基礎(chǔ)。若沒(méi)有深厚的功底,是不會(huì)迸發(fā)出思維的火花。所以對(duì)數(shù)學(xué)基本問(wèn)題和基本方法的牢固掌握和應(yīng)用是很重要的。所謂知識(shí)組塊又稱知識(shí)反應(yīng)塊。它們由數(shù)學(xué)中的定義、定理、公式、法則等組成,并集中地反映在一些基本問(wèn)題,典型題型或方法模式。許多其他問(wèn)題的解決往往可以歸結(jié)成一個(gè)或幾個(gè)基本問(wèn)題,化為某類典型題型,或者運(yùn)用某種方式模式。這些知識(shí)組塊由于不一定以定理、性質(zhì)、法則等形式出現(xiàn),而是分布于例題或問(wèn)題之中,因此不容易引起師生的特別重視,往往被淹沒(méi)在題海之中,如何將它們篩選出來(lái)加以精練是數(shù)學(xué)中值得研究的一個(gè)重要課題。
在解數(shù)學(xué)題時(shí),主體在明了題意并抓住題目條件或結(jié)論的特征之后,往往一個(gè)念頭閃現(xiàn)就描繪出了解題的大致思路。這是尖子學(xué)生經(jīng)常會(huì)碰到的事情,在他們大腦中貯存著比一般學(xué)生更多的知識(shí)組塊和形象直感,因此快速反應(yīng)的數(shù)學(xué)靈感就應(yīng)運(yùn)而生。
2、強(qiáng)調(diào)數(shù)形結(jié)合,發(fā)展幾何思維與類幾何思維。 數(shù)學(xué)形象直感是數(shù)學(xué)靈感思維的源泉之一,而數(shù)學(xué)形象直感是一種幾何直覺(jué)或空間觀念的表現(xiàn),對(duì)于幾何問(wèn)題要培養(yǎng)幾何自身的變換、變形的直觀感受能力。對(duì)于非幾何問(wèn)題則要用幾何眼光去審視分析就能逐步過(guò)渡到類幾何思維。
3、重視整體分析,提倡塊狀思維。
在解決數(shù)學(xué)問(wèn)題時(shí)要教會(huì)學(xué)習(xí)從宏觀上進(jìn)行整體分析,抓住問(wèn)題的框架結(jié)構(gòu)和本質(zhì)關(guān)系,從思維策略的角度確定解題的入手方向和思路。在整體分析的基礎(chǔ)上進(jìn)行大步驟思維,使學(xué)生在具有相應(yīng)的知識(shí)基礎(chǔ)和已達(dá)到一定熟練程度的情況下能變更和化歸問(wèn)題,分析和辨認(rèn)組成問(wèn)題的知識(shí)集成塊,培養(yǎng)思維跳躍的能力。在練習(xí)中注意方法的探求,思路的尋找和類型的識(shí)別,養(yǎng)成簡(jiǎn)縮邏輯推理過(guò)程,迅速作出直覺(jué)判斷的洞察能力
4、鼓勵(lì)大膽猜測(cè),養(yǎng)成善于猜想的數(shù)學(xué)思維習(xí)慣。
數(shù)學(xué)猜想是在數(shù)學(xué)證明之前構(gòu)想數(shù)學(xué)命題思維過(guò)程。“數(shù)學(xué)事實(shí)首先是被猜想,然后才被證實(shí)。”猜想是一種合情推理,它與論證所用的邏輯推理相輔相成。對(duì)于未給出結(jié)論的數(shù)學(xué)問(wèn)題,猜想的形成有利于解題思路的正確誘導(dǎo);對(duì)于已有結(jié)論的問(wèn)題,猜想也是尋求解題思維策略的重要手段。數(shù)學(xué)猜想是有一定規(guī)律的,并且要以數(shù)學(xué)知識(shí)的經(jīng)驗(yàn)為支柱。但是培養(yǎng)敢于猜想、善于探索的思維習(xí)慣是形成數(shù)學(xué)靈感,發(fā)展數(shù)學(xué)思維,獲得數(shù)學(xué)發(fā)現(xiàn)的基本素質(zhì)。因此,在數(shù)學(xué)教學(xué)中,既要強(qiáng)調(diào)思維的嚴(yán)密性,結(jié)果的正確性,也不應(yīng)忽視思維的探索性和發(fā)現(xiàn)性,即應(yīng)重視數(shù)學(xué)直覺(jué)猜想的合理性和必要性。
以上為數(shù)學(xué)靈感培養(yǎng)的一部分。其實(shí),我認(rèn)為沒(méi)有萬(wàn)能的教學(xué)法,任何有益的方法都只對(duì)那些有學(xué)習(xí)積極性而苦于學(xué)習(xí)方法不好,特別缺乏思維方法的學(xué)生才起作用。數(shù)學(xué)是一門思維學(xué)科,在我們目前的數(shù)學(xué)教育中,如何設(shè)計(jì)、滲透數(shù)學(xué)的靈感教育是一項(xiàng)重要的改革,我們要以培養(yǎng)學(xué)生的創(chuàng)造性思維為主,把傳授知識(shí)和訓(xùn)練思維能力統(tǒng)一起來(lái),培養(yǎng)適應(yīng)社會(huì)需求的創(chuàng)造性人才。
怎樣培養(yǎng)數(shù)學(xué)靈感
數(shù)學(xué)就是要培養(yǎng)我們的邏輯思維,想在數(shù)學(xué)上找感覺(jué),除了上課認(rèn)真聽老師講重點(diǎn)外,每天必須有計(jì)劃地練習(xí),多做數(shù)學(xué)題目,先從筆上找靈感,你要想著,數(shù)學(xué)的題目雖然多,但不過(guò)就那么幾個(gè)題型,只要搞定題型,就能以不變應(yīng)萬(wàn)變!
我以前上高中的時(shí)候,有一段時(shí)間數(shù)學(xué)成績(jī)奇差無(wú)比,而且我又是那種不起眼的"角落學(xué)生",眼看老師都不愛搭理我了,但是我沒(méi)有去在意老師怎么看我什么的,我那時(shí)每天下課課間都拿出數(shù)學(xué)筆記本和錯(cuò)題集(將每次考完的試卷上的錯(cuò)題整理下來(lái),多做一做,會(huì)很有用)在那狂K 我一直堅(jiān)持著,后來(lái)的期末考,我數(shù)學(xué)考了120幾分(總分150,最差時(shí)期總考80,90)
還有就是有搞不懂的,別干耗著浪費(fèi)時(shí)間,你該問(wèn)老師或同學(xué)(我基本上都是問(wèn)同學(xué),座位四周的人只要數(shù)學(xué)比我好的,我就去請(qǐng)教他/她 呵呵)
數(shù)學(xué)靈感的培養(yǎng)
三十年前,人們?cè)?jīng)把數(shù)學(xué)教育置于“現(xiàn)代化”的旗幟之下,把大學(xué)的一些內(nèi)容放到中學(xué),又把高中的一些內(nèi)容下放到初中,后來(lái),人們發(fā)現(xiàn)這樣遇到了麻煩和困難。
知識(shí)內(nèi)容確實(shí)需要更新,例如在中學(xué)增加電腦和具體的集合運(yùn)算,無(wú)疑是正確的,然而,如果忽視思維教育,忽視把數(shù)學(xué)思維的一般方法盡早傳授給中學(xué)生,甚至通過(guò)砍平面幾何,削弱初中早就實(shí)行的邏輯思維訓(xùn)練,貽誤青少年的發(fā)展時(shí)機(jī),是非常錯(cuò)誤的。
中學(xué)階段是培養(yǎng)人才的重要時(shí)期,一般在此階段可以分辨出優(yōu)秀生和差生。根據(jù)多年的考察和研究,發(fā)現(xiàn)優(yōu)秀的思維方式,方法主要有六項(xiàng):
一、模塊狀思維和復(fù)合思維。優(yōu)秀生腦海里不僅儲(chǔ)存有定理及其證明,而且儲(chǔ)存有另外的許多基本問(wèn)題及其解法。一拿到數(shù)學(xué)問(wèn)題,通過(guò)聯(lián)想(或通過(guò)其他思維方法誘導(dǎo)),可以迅速認(rèn)出問(wèn)題中包含一個(gè)個(gè)基本問(wèn)題(稱反映塊),從而把難題迅速降低難度。換言之,反映塊引起的塊狀思維往往可以在知識(shí)與難題之間架橋,往往可以解決由知識(shí)向復(fù)雜思維過(guò)渡的問(wèn)題。反映塊兼有知識(shí)和思維的雙重性,是非常重要的。由于平日訓(xùn)練使用反映塊達(dá)到了十分成熟的程度,所以聯(lián)想很快。例如:求 的值。一見到兩角的正切和與積,就聯(lián)想到兩角和的正切公式的逆運(yùn)用,很快便可以求解。
解答如下:
=二、搞彎曲型思維。優(yōu)秀生反映快的另一原因,是非常善于搞彎曲型思維。一時(shí)聯(lián)想不到合適的定理或反應(yīng)塊,沒(méi)法把難題分解,就搞分析轉(zhuǎn)化,覓取解題信息,搞數(shù)學(xué)猜想,引出下步該如何思維的端倪和思維的動(dòng)力,把問(wèn)題由陌生轉(zhuǎn)化為熟悉。結(jié)果,不僅可以找到問(wèn)題的解法,而且可以識(shí)破編者的用心良苦。利用定理或反映塊初編出來(lái)的問(wèn)題,其形態(tài)相當(dāng)熟悉,容易實(shí)現(xiàn)聯(lián)想,于是,編題者把它的假設(shè)或結(jié)論加以變形,或在圖形中拆掉一些線段,弄得面目全非,不易實(shí)現(xiàn)聯(lián)想,使難度大大培加,相應(yīng)的,優(yōu)秀生搞的彎曲型思維,實(shí)際上是“反拐彎”的本領(lǐng),是取得靈感的源泉。例如:兩角和與差公式把 的三角函數(shù)式轉(zhuǎn)化成了 的三角函數(shù)式。如果反過(guò)來(lái),從左使用公式,我們就能得到 ,如三、最經(jīng)濟(jì)地思維。一見新問(wèn)題,就立即回憶以前解過(guò)的老問(wèn)題,企圖從老問(wèn)題的解法得到啟發(fā),而能否找到合適的老問(wèn)題,常常取決于是否具有“見微知著”的本領(lǐng):在新問(wèn)題中尋找熟悉的成分,一旦在假設(shè)中或結(jié)論中發(fā)現(xiàn)熟悉的任何一款,就立即回想有關(guān)的老問(wèn)題,特別是回憶其解法,利用它擬出全局或局部解題方案,哪怕僅僅引出關(guān)于解題方向的猜測(cè)也好。
換言之,試圖把解過(guò)的問(wèn)題都變成以后解決問(wèn)題的跳板,即在知識(shí)與難題之間架設(shè)第三種橋梁,順便訓(xùn)練自己的記憶和聯(lián)想力。
四、最大效益地思維。從不就事論事,決不放過(guò)解題過(guò)程中的任何“副產(chǎn)品”;或把此題升華為定理形式,訓(xùn)練自己的由表及里,去粗取精,抽象概括和文字表達(dá)等能力;或?qū)ふ沂菇鉀Q了的問(wèn)題、公式和數(shù)據(jù);或?qū)ふ乙院笥杏玫乃季S方法;或“減弱”假設(shè),或“加強(qiáng)”結(jié)論,看能否得到更“精”的命題;或探討逆命題的真假。
換言之,解一道題可以往往引出幾道新題,解決了就一并存入腦海,使知識(shí)體系不斷膨脹,使思維向各方延伸,使自己善于識(shí)別改頭換面的問(wèn)題。
五、超前思維。老師才引導(dǎo)學(xué)生邁出第一步,就已經(jīng)能走第二、第三步,甚至已經(jīng)走完了老師的思維全路,正在尋找別的解法,實(shí)現(xiàn)超前思維。究其原因,主要靠思維方法精良,也靠素有積極思維的習(xí)慣和毅力。一般學(xué)生都無(wú)此習(xí)慣和毅力,自學(xué)或預(yù)習(xí)到“半桶水”就沾沾自喜,滿足于知識(shí),不愿超前思維,最終責(zé)則不能超前思維。
六、搞擬真推理和反面思維。搞擬真推理,如猜測(cè)、類比、模擬等,有了似是而非的猜測(cè)還不滿足,定要弄個(gè)水落石出,不要浪費(fèi)精力于假命題,最初總要想法造反例推翻它,不成,才想法證明它,造反例的能力是理解力、創(chuàng)造力的集中體現(xiàn)和反映,是思維能力強(qiáng)弱的重要表現(xiàn)。用特殊的手法先檢驗(yàn)命題的可靠性,并順著這條思維自我訓(xùn)練,尋找反例或解法,逐漸形成了一種很獨(dú)特的心理基礎(chǔ),敢于懷疑,敢于猜測(cè)。
以上為數(shù)學(xué)靈感培養(yǎng)的一部分,其實(shí),我認(rèn)為沒(méi)有萬(wàn)能的教學(xué)法,任何有益的方法都只對(duì)那些有學(xué)習(xí)積極性而苦于學(xué)習(xí)方法不好,特別缺乏思維方法的學(xué)生才起作用。
數(shù)學(xué)靈感培養(yǎng)
教學(xué)過(guò)程中,經(jīng)常有學(xué)生會(huì)問(wèn)這么一個(gè)問(wèn)題:老師,當(dāng)你拿到一道題目的時(shí)候,為什么你能夠想到用這個(gè)方法?
其實(shí),這是關(guān)于數(shù)學(xué)靈感的一個(gè)話題。寫作,搞藝術(shù)經(jīng)常講到靈感;同樣在數(shù)學(xué)學(xué)習(xí)過(guò)程中,靈感也非常重要,是分析和解決實(shí)際問(wèn)題能力的一個(gè)重要手段,對(duì)于開發(fā)學(xué)生的智力是一個(gè)不可忽視的因素。因此,在數(shù)學(xué)教學(xué)中,重視靈感能力的培養(yǎng),對(duì)培養(yǎng)學(xué)生的創(chuàng)新精神和創(chuàng)造能力是至關(guān)重要的。
數(shù)學(xué)是一門思維學(xué)科,在我們目前的數(shù)學(xué)教育中,如何設(shè)計(jì)、滲透數(shù)學(xué)的靈感教育是一項(xiàng)重要的改革,我們要以培養(yǎng)學(xué)生的創(chuàng)造性思維為主,把傳授知識(shí)和訓(xùn)練思維能力統(tǒng)一起來(lái),培養(yǎng)適應(yīng)社會(huì)需求的創(chuàng)造性人才。
通過(guò)一段時(shí)間的數(shù)學(xué)的研究性學(xué)習(xí),針對(duì)”數(shù)學(xué)靈感的培養(yǎng)”這一課題進(jìn)行資料的查找與探討總結(jié)。我們發(fā)現(xiàn),靈感真的是學(xué)習(xí)的關(guān)鍵元素,只有以靈感作為學(xué)習(xí)的基礎(chǔ)與前提,才能更好地開拓自己的思維,挖掘出自己內(nèi)在所具有的天賦。因此,我們?cè)谡n堂內(nèi)外應(yīng)注重學(xué)習(xí)數(shù)學(xué)靈感的培養(yǎng)。我們可以從下列各個(gè)方面入手來(lái)培養(yǎng)數(shù)學(xué)靈感:
1、 重視數(shù)學(xué)基本問(wèn)題和基本方法的牢固掌握和應(yīng)用,以形成并豐富數(shù)學(xué)知識(shí)組塊。
靈感不是靠“機(jī)遇”,直覺(jué)的獲得雖然是有偶然性,但決不是無(wú)緣無(wú)故的憑空臆想,而是以扎實(shí)的知識(shí)為基礎(chǔ)。若沒(méi)有深厚的功底,是不會(huì)迸發(fā)出思維的火花。所以對(duì)數(shù)學(xué)基本問(wèn)題和基本方法的牢固掌握和應(yīng)用是很重要的。所謂知識(shí)組塊又稱知識(shí)反應(yīng)塊。它們由數(shù)學(xué)中的定義、定理、公式、法則等組成,并集中地反映在一些基本問(wèn)題,典型題型或方法模式。許多其他問(wèn)題的解決往往可以歸結(jié)成一個(gè)或幾個(gè)基本問(wèn)題,化為某類典型題型,或者運(yùn)用某種方式模式。這些知識(shí)組塊由于不一定以定理、性質(zhì)、法則等形式出現(xiàn),而是分布于例題或問(wèn)題之中,因此不容易引起師生的特別重視,往往被淹沒(méi)在題海之中,如何將它們篩選出來(lái)加以精練是數(shù)學(xué)中值得研究的一個(gè)重要課題。
在解數(shù)學(xué)題時(shí),主體在明了題意并抓住題目條件或結(jié)論的特征之后,往往一個(gè)念頭閃現(xiàn)就描繪出了解題的大致思路。這是尖子學(xué)生經(jīng)常會(huì)碰到的事情,在他們大腦中貯存著比一般學(xué)生更多的知識(shí)組塊和形象直感,因此快速反應(yīng)的數(shù)學(xué)靈感就應(yīng)運(yùn)而生。
2、強(qiáng)調(diào)數(shù)形結(jié)合,發(fā)展幾何思維與類幾何思維。 數(shù)學(xué)形象直感是數(shù)學(xué)靈感思維的源泉之一,而數(shù)學(xué)形象直感是一種幾何直覺(jué)或空間觀念的表現(xiàn),對(duì)于幾何問(wèn)題要培養(yǎng)幾何自身的變換、變形的直觀感受能力。對(duì)于非幾何問(wèn)題則要用幾何眼光去審視分析就能逐步過(guò)渡到類幾何思維。
3、重視整體分析,提倡塊狀思維。
在解決數(shù)學(xué)問(wèn)題時(shí)要教會(huì)學(xué)習(xí)從宏觀上進(jìn)行整體分析,抓住問(wèn)題的框架結(jié)構(gòu)和本質(zhì)關(guān)系,從思維策略的角度確定解題的入手方向和思路。在整體分析的基礎(chǔ)上進(jìn)行大步驟思維,使學(xué)生在具有相應(yīng)的知識(shí)基礎(chǔ)和已達(dá)到一定熟練程度的情況下能變更和化歸問(wèn)題,分析和辨認(rèn)組成問(wèn)題的知識(shí)集成塊,培養(yǎng)思維跳躍的能力。在練習(xí)中注意方法的探求,思路的尋找和類型的識(shí)別,養(yǎng)成簡(jiǎn)縮邏輯推理過(guò)程,迅速作出直覺(jué)判斷的洞察能力
4、鼓勵(lì)大膽猜測(cè),養(yǎng)成善于猜想的數(shù)學(xué)思維習(xí)慣。
數(shù)學(xué)猜想是在數(shù)學(xué)證明之前構(gòu)想數(shù)學(xué)命題思維過(guò)程。“數(shù)學(xué)事實(shí)首先是被猜想,然后才被證實(shí)。”猜想是一種合情推理,它與論證所用的邏輯推理相輔相成。對(duì)于未給出結(jié)論的數(shù)學(xué)問(wèn)題,猜想的形成有利于解題思路的正確誘導(dǎo);對(duì)于已有結(jié)論的問(wèn)題,猜想也是尋求解題思維策略的重要手段。數(shù)學(xué)猜想是有一定規(guī)律的,并且要以數(shù)學(xué)知識(shí)的經(jīng)驗(yàn)為支柱。但是培養(yǎng)敢于猜想、善于探索的思維習(xí)慣是形成數(shù)學(xué)靈感,發(fā)展數(shù)學(xué)思維,獲得數(shù)學(xué)發(fā)現(xiàn)的基本素質(zhì)。因此,在數(shù)學(xué)教學(xué)中,既要強(qiáng)調(diào)思維的嚴(yán)密性,結(jié)果的正確性,也不應(yīng)忽視思維的探索性和發(fā)現(xiàn)性,即應(yīng)重視數(shù)學(xué)直覺(jué)猜想的合理性和必要性。
以上為數(shù)學(xué)靈感培養(yǎng)的一部分。其實(shí),我認(rèn)為沒(méi)有萬(wàn)能的教學(xué)法,任何有益的方法都只對(duì)那些有學(xué)習(xí)積極性而苦于學(xué)習(xí)方法不好,特別缺乏思維方法的學(xué)生才起作用。數(shù)學(xué)是一門思維學(xué)科,在我們目前的數(shù)學(xué)教育中,如何設(shè)計(jì)、滲透數(shù)學(xué)的靈感教育是一項(xiàng)重要的改革,我們要以培養(yǎng)學(xué)生的創(chuàng)造性思維為主,把傳授知識(shí)和訓(xùn)練思維能力統(tǒng)一起來(lái),培養(yǎng)適應(yīng)社會(huì)需求的創(chuàng)造性人才。
猜你喜歡:
1.小學(xué)數(shù)學(xué)學(xué)習(xí)方法的培養(yǎng)
2.怎么樣培養(yǎng)自己的創(chuàng)新思維能力
4.培養(yǎng)孩子數(shù)學(xué)預(yù)習(xí)習(xí)慣的方法
5.數(shù)學(xué)專業(yè)學(xué)科范圍及培養(yǎng)目標(biāo)