怎么增強空間想象力
怎么增強空間想象力
空間想象力對于學生來說特別重要,關(guān)乎數(shù)學的學習能力,怎樣才能增強空間想象力呢?今天學習啦小編為大家?guī)砹嗽趺丛鰪娍臻g想象力資料,一起來看看吧!
怎么增強空間想象力
當一個學生苦惱地述說自己基礎(chǔ)太差時,其背后原因可能有三:一是以前太貪玩,沒有付出足夠多時間去學習;二是學習方法不對;三是某些基礎(chǔ)認知能力欠缺。
最難的是某些基礎(chǔ)認知能力上有欠缺的同學,這些同學,常常使用的學習方法也不對,雖然以前也曾努力過,但常因成績不好,喪失學習信心,曾屢次放棄學習,頹廢貪玩。所以這些基礎(chǔ)差的同學,有可能三個原因都占齊了。
也許在文科生中,空間想象能力不足的同學會更多一些,因為不少同學正是因為學不好幾何等而不得不轉(zhuǎn)學文的。但其實在理科生中,空間想象能力不足的同學也是很多的。
我給一學生講幾何,有時他提出一思路,我會說:錯,因為那條線段可以動。我的意思是:那條線段滑動時,仍滿足題目條件,但可輕易否決他的思路不成立。我曾以為:每個人都能在腦子里把這些線段滑動,或把圖形變形,來尋找并檢驗答題的思路和方法。后來才知道,只有極少數(shù)人才有能力這樣做。
西方教育體系下的孩子,空間想象能力要強很多。
米開朗基羅的雕塑,與莎士比亞的戲劇、牛頓的理論有同樣不朽的名聲。在中國則雖有不朽的雕塑作品,但沒有不朽的名字,只有無數(shù)默默無聞的匠人。因此,盡管空間想象能力在各項藝術(shù)能力中難度最大,但在中國的傳統(tǒng)文化中,是不重視空間想象能力的。中國小孩天天作業(yè),獲得語文數(shù)學上看得見的成績,歐美小孩則經(jīng)年累月玩各種游戲,特別是拼圖與積木等,培養(yǎng)的是看不見的能力。
空間想象能力不僅體現(xiàn)在幾何或地理構(gòu)建地球與太陽的關(guān)系這些知識上,事實上,幾乎所有數(shù)學理論或函數(shù)都會附上圖形以利于理解,絕大數(shù)物理現(xiàn)象也需要在大腦中構(gòu)建一些想象中的圖形才會更好理解,化學的原子分子結(jié)構(gòu)電子層排列等知識若沒有空間想象能力也會變得很難。
今天,在中國,已有更多的人特別是教育者注意空間能力的重要性。學生增加了學習三視圖的畫法等內(nèi)容。但是,空間能力不應該是到了學校,到了某個年齡段才開始培養(yǎng)的,而應是在孩子很小時,就為其營造一個可潛移默化地發(fā)展空間能力的成長環(huán)境。這樣,當學生學三視圖的畫法時,會覺得這是很簡單、很輕松愉快的事,不會讓人絞盡腦汁半天都想不出來。
對于空間能力有欠缺的中學生,特別是高中生,已不可能再坐時光飛車回到過去,一切從頭開始。所以只能從現(xiàn)在的起點出發(fā),進行針對性的訓練來提高。訓練時,可把中學幾何定理文字打印出來,然后每朗讀一條定理,就在紙上畫出相應圖形;可多畫幾遍,如有可能,每一遍從不同視角畫出不一樣圖形;接下來可邊讀邊用手在空氣中畫圖;慢慢過渡到邊看邊在腦子里想圖形。如果自己做不到,可兩三個同學結(jié)組,你讀我畫,互相幫助和討論。
這種看著文字然后畫圖和想象的方法也可用函數(shù)性質(zhì)和圖形來作素材,第一步是通過性質(zhì)的文字描述得到函數(shù)的各種圖形,第二步是讓函數(shù)中某參數(shù)變化,形成函數(shù)圖象發(fā)生漸變的動畫。這樣針對性的訓練每天半小時到一小時,大約兩個月后,空間能力就會慢慢地開始有很明顯的進步。
想用題海戰(zhàn)術(shù)來提高空間能力這類基礎(chǔ)能力,基本上是很難的。能力較低的同學,要自己做出題目,會花費很多時間,最終不得不直接看答案,背答案。有些人直接看答案都要看很久才有點懂,即使把答案看懂了,記著了,也不能舉一反三,遇到其他類似題還是有可能做不出來。
有同學說:高三了哪有時間提基礎(chǔ)?記?。耗サ恫徽`砍柴功!你每天訓練一小時,兩個月只花五六十小時而已,以后你在數(shù)學、物理等學習中節(jié)約出來的遠遠不止這點。另外,訓練基礎(chǔ)能力的過程,也讓基礎(chǔ)知識掌握得更加牢靠。老實說:你要真把基礎(chǔ)知識掌握得非常熟練的話,一道難題不做,也夠考上一本。
當學生有一道題做不出來或看不懂時,可以暴露學生很多信息,通過對其幫助或分析可以發(fā)現(xiàn)其弱點和不足,然后制定后續(xù)的學習方向和方法。但大多數(shù)人常簡單認為這只是學生在學習中沒認真沒努力,當發(fā)現(xiàn)對其反復講解仍不懂時,會覺得學生沒用心聽,沒用心思考,或者覺得這么簡單都不懂,是不是太笨。有時候?qū)W生想尋求幫助,結(jié)果反而是傷了自尊和自信。
其他可能造成嚴重的學習障礙的基礎(chǔ)能力,包括:閱讀能力不足;對文字理解能力不足;在知識和實際問題間建立類比聯(lián)系的能力不足等。無論是哪一種能力不足,都暴露出學生在以前的成長過程中,其家庭和學校環(huán)境存在某些學習資源的嚴重缺失,或某些學習機會被父母和老師壓制和漠視。但無論哪種能力的不足,只要你能發(fā)現(xiàn)并采取適當?shù)拇胧┭a救的話,仍然可以獲得相當長足的進步。
什么是空間想象力
空間想象力是人們對客觀事物的空間形式(空間幾何形體)進行觀察、分析、認知的抽象思維能力,它主要包括下面三個方面的內(nèi)容:(1)能根據(jù)空間幾何形體或根據(jù)表述幾何形體的語言、符號,在大腦中展現(xiàn)出相應的空間幾何圖形,并能正確想象其直觀圖.(2)能根據(jù)直觀圖,在大腦中展現(xiàn)出直觀圖表現(xiàn)的的幾何形體及其組成部分的形狀、位置關(guān)系和數(shù)量關(guān)系.(3)能對頭腦中已有的空間幾何形體進行分解、組合,產(chǎn)生新的空間幾何形體,并正確分析其位置關(guān)系和數(shù)量關(guān)系. 培養(yǎng)學生的空間想象力是中學數(shù)學教學的主要任務之一,同時也是難點之一.在教學中如果對空間想象力這一名詞只是提的多,理性分析不夠,不能把握其培養(yǎng)規(guī)律,就可能造成這樣的結(jié)果:少部分有悟性的學生的空間想象力得到了提高,而大部分學生則收益甚少,乃至于視《立體幾何》的學習為畏途.
辯證唯物主義認為,任何事物的變化發(fā)展都有其內(nèi)在規(guī)律.空間想象力的提高也是如此,它是逐級向上的,即有明顯的層次性.教師惟有把握好這一規(guī)律,將之有機地滲透到教學實踐中去,有意識、有針對性地采取得當?shù)慕虒W方法和措施,才能有效地提高學生的空間想象力.
如何提高學生的空間想象力
一、利用計算機繪制生動、形象的立體圖形,使學生通過對直觀圖形透徹的觀察,理解抽象的理論概念
在“多面體與旋轉(zhuǎn)體的體積”這一章中,主要內(nèi)容是柱、錐、臺、球四種體積公式的推導,關(guān)鍵是對立體圖形分析與理解。為了幫助學生在觀察圖形的基礎(chǔ)上從感性認識向理性認識過渡,我們運用我校的計算機設(shè)備,與專職電腦編程人員密切合作,設(shè)計編制了圖形軟件來輔助教學。我們先根據(jù)講解的需要設(shè)計出基本圖形,再配合編程人員利用計算機先進的繪圖系統(tǒng)進行繪制。在繪制過程中,我們利用畫面的連續(xù)移動構(gòu)成動畫來體現(xiàn)切割、旋轉(zhuǎn)、移動等動態(tài)動作。在講解祖原理時,其主要內(nèi)容為:兩個等高的幾何體,若被平行于底的平面截得的兩個截面面積相等,則這兩個幾何體的體積相等。為了體現(xiàn)其中的關(guān)鍵點:兩個幾何體任意位置的平行截面相等,我們繪制了多幅不同位置截面的圖形,并將截面涂上鮮明的色彩,按順序編排好,連續(xù)播放時即形成了截面上下移動的動畫效果,使學生形象地認識到不同位置的平行截面處處相等。又如在講解錐體的體積公式推導時,由于要將三棱柱分割成三個三棱錐,圖形變化較大,學生不易理解,因此我們將切割過程從頭至尾展現(xiàn)給學生,在講解時又將所要比較的兩個三棱錐逐步恢復到切割前的狀態(tài),再分開。隨著分開一復原一再分開的移動過程,學生們清楚自然地得出了所要推證的結(jié)論,同時也使得教師的講解輕松而且順理成章。有了錐的體積公式,我們又進一步依據(jù)大錐被平行于底的平面截去一小錐得到臺體的思路,利用已推導出的錐體體積公式去推導臺體的體積公式。我們利用動畫效果使一平面進行移動呈現(xiàn)出動割大錐的過程,即讓平面從大錐錐體某處以平行于底的方式插入,從另一側(cè)抽出,留下切割的痕跡,進而將截得的小錐移到其它位置,將剩下的臺體展現(xiàn)給學生。這一過程的加入,在學生的頭腦中非常深刻地留下了臺體與錐體的聯(lián)系,可以說是過目不忘,收到了很好的效果。
二、充分利用計算機繪圖多功能的優(yōu)越性,從多方位、多角度、多側(cè)面描繪立體圖形,解決平面立體圖形與真實立體圖形在視覺上的差異
我們在平面上繪制立體圖形就要考慮到視覺差異的問題。比如,在紙上畫一個立方體,它的某些面就必須呈平行四邊形,才給人一種“體”的感覺,而實際上立方體的各個面均為正方形。為了不使學生把直觀感覺當作概念,我們設(shè)計了一些旋轉(zhuǎn)變形動作。在講球的體積公式時,應用祖原理,找到了一個與半球體積相等的幾何體,即與半球等高的圓柱中間挖去一個圓錐,證明的關(guān)鍵是推導出二者在等高處的平行截面面積相等。從圖上看,這兩個截面分別為橢圓和橢圓環(huán),而實際形狀應為圓和圓環(huán)。為了更形象地說明問題,我們將這兩個截面設(shè)計為從原位置水平移動出來,再水平旋轉(zhuǎn)90度使其成為豎直放置,這樣兩個截面就恢復了實際形狀。同時我們又讓環(huán)形截面中的小圓逐漸縮小至一點,使圓環(huán)變成與另一截面大小一樣的圓,通過二者色彩的互換閃爍,使學生形象直觀地感覺到是兩個面積相等的截面,然后通過理論證明它們的面積相等。這樣,從直觀到理論兩方面的配合,加深了學生的理解,使得這個難點順利解決。
三、利用多媒體輔助教學,引導學生通過觀察圖形主動積極地去尋找解題思路
現(xiàn)代教學論的思想核心是確認教師在教學中的主導地位的同時,認定學生在學習活動中的主體地位。因此教學的最終目的是啟發(fā)和調(diào)動學生的主動性、積極性,讓學生“會學”。在多媒體教學的嘗試中,為了打破傳統(tǒng)教學中的“老師講,學生聽”的習慣,我們將課上的習題“從一個正方體中,如圖那樣截去四個三棱錐后,得到一個正三棱錐,求它的體積是正方體體積的幾分之幾?”根據(jù)題意設(shè)計成動畫情景。一個正方體依次被切去了四個角,把切去的部分放到屏幕的四角,中間剩下一個三棱錐,求三棱錐的體積。學生根據(jù)畫面的演示,立即想到剩余部分是由整體減去切掉的。有了思路后,再從畫面中清晰地推導出每個角的體積是整體的1/6,進而得出所求體積為整體的1/3。這樣,通過畫面的演示,不需教師講解,學生自己就可以找到求解方法,同時在無形中途立了間接求體積的概念。通過多媒體教學,我們發(fā)現(xiàn)它具有不可比擬的優(yōu)越性。首先,多媒體教學使課上教學省力;它能直觀、生動、形象地進行教學,有利于引起學生的注意力,充分調(diào)動學生的積極性,并且使教師的板書量大大減少。其次,多媒體教學增大了課容量,加強了知識間的連貫性。由于多媒體教學直觀、生動、形象地突出了教學重點,淺化了教學難點,使學生理解知識的進度加快,并且節(jié)省了教師反復講解的時間,節(jié)省了課時,相對增大了課容量,突出了各部分知識的連貫性,取得較好的教學效果。
看過“怎么增強空間想象力”的人還看了:
1.想象力測試
2.想象力測試
4.什么是空間想象力