六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>新聞資訊>學習資訊>

如何學好數(shù)學科目(4)

時間: 炎玉700 分享

  高中數(shù)學學習方法與技巧分享

  進入高中后,由于對知識的難度、廣度、深度的要求更高,掌握好合適的方法技巧能夠讓學學學得更輕松,下面就來給大家介紹一下高中數(shù)學學習方法與技巧,希望能夠幫助到大家!

  1.數(shù)形結合思想方法

  數(shù)形結合就是充分考查數(shù)學問題的條件和結論之間的內在聯(lián)系,既分析其代數(shù)意義又揭示其幾何意義,將數(shù)量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決。使問題化難為易、化繁為簡,從而得到解決。例如,在一些分子、分母都是三角函數(shù)或一次函數(shù)的代數(shù)式中,要求它的值域,很多都轉化為經過兩點的直線的距離來求解;又或者在一些含有根號的代數(shù)式的題目中,其結構沒有明顯的幾何意義,此時利用兩點間距離公式可能做不出來,若能利用換元法,運用數(shù)形結合的思想方法,也可以很快解決問題。由此可知,數(shù)學結合思想方法是數(shù)學解題中非常重要的方法。

  2.分類討論思想方法

  分類討論思想方法是指在解答某些數(shù)學問題時,按照一定的原則或某一確定的標準,在比較的基礎上,將數(shù)學對象劃分為若干既有聯(lián)系又有區(qū)別的部分,然后逐類進行討論,再把這幾類的結論匯總,從而得出問題的答案。例如,解不等式ax>2時,我們就把它分為a>0、a=0和a<0三種情況來討論,并依照這三種情況進行下一步驟的解題。這樣就顯得清晰有條理,也不會漏做每一種可能了。

  3.函數(shù)與方程的思想方法

  函數(shù)與方程的思想是指在解決某些數(shù)學問題時,構造適當?shù)暮瘮?shù)與方程,把問題轉化為研究輔助函數(shù)與輔助方程性質的思想例如,求方程的根的分布問題時,當然可以用解方程的方式,一步步算下來,但是卻非常的繁瑣,而運用函數(shù)的觀點去求解,那不等式的推理證明過程則會簡潔明了許多。不信同學們可以在下面算算這道題:

  4.等價轉化思想方法

  等價轉化是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的思想方法。同學們在遇到難以直接做出的問題的時候,通過轉化變成我們比較熟悉的問題來處理,或者將較為繁瑣、復雜的問題,變成比較簡單的問題,比如從超越式到代數(shù)式、從無理式到有理式、從分式到整式。例如,在有關探求參數(shù) 的取值范圍問題中,當直接構設以參數(shù)為元的不等式較為困難時,??梢氲腶相關系數(shù)a,借助a把問題進行等價轉化。


猜你感興趣:

1.學習數(shù)學最快的方法

2.文科生怎樣學好數(shù)學

3.如何學好小學三年級數(shù)學

4.小學生快速學好數(shù)學的方法

5.數(shù)學學習方法及心得

6.數(shù)學學習小竅門

1685994