復(fù)利債券的計算公式
復(fù)利債券的計算公式
復(fù)利債券是指計算利息時,按一定期限將所生利息加入本金再計算利息,逐期滾算的債券,復(fù)利債券的利息包含了貨幣的時間價值。下面是學(xué)習(xí)啦小編帶來關(guān)于復(fù)利債券的計算公式的內(nèi)容,希望能讓大家有所收獲!
復(fù)利債券的計算公式
按照這種方法,每經(jīng)過一個計息期,要將所生利息加入本金再計利息,逐期滾算,俗稱“利滾利”。這里所說的計息期是指相鄰兩次計息的時間間隔,如年、月、日等。除非特別指明,計息期為1年。
復(fù)利終值 [例1] 某人將10000元投資于一項事業(yè),年報酬率為6%,經(jīng)過1年時間的期終金額為: s=p+p×i =p(1+i) =10000×(1+6%) =10600(元) 其中:p――現(xiàn)值或初始值; i――報酬率或利率; s――終值或本利和。 若此人不提走現(xiàn)金,將10600元繼續(xù)投資于該事業(yè),則第二年本利和為: s=[p*(1+i)]*(1+i) =p*(1+i)2 =10000×(1+6%)2 =10000×1.1236 =11236(元) 同理,第三年的期終金額為: s=p*(1+i)3 =10000×(1+6%)3 =10000×1.1910 =11910(元) 第n年的期終金額為: s=p*(1+i)n
復(fù)利債券的含義
復(fù)利債券與單利債券相對應(yīng),它是指計算利息時,按一定期限將所生利息加入本金再計算利息,逐期滾算的債券。復(fù)利債券的利息包含了貨幣的時間價值。另外,在名義利率相同的情況下,復(fù)利債券的實得利息要多于單利債券。復(fù)利是假定每年的利息再投資,并假定再投資的利率不變。
復(fù)利債券與單利債券、貼現(xiàn)債券、累進利率債券
1.單利債券
單利債券是指在計算利息時,不論期限長短,僅按本金計息,所生利息不再加入本金計算下期利息的債券。
2.復(fù)利債券
復(fù)利債券與單利債券相對應(yīng),是指計算利息時,按一定期限將所生利息加入本金再計算利息,逐期滾算的債券。
3.貼現(xiàn)債券
貼現(xiàn)債券是指在票面上不規(guī)定利率,發(fā)行時按某一折扣率,以低于票面金額的價格發(fā)行,到期時仍按面額償還本金的債券。其發(fā)行價格與票面價格(償還金額)的差額構(gòu)成了實際的利息。短期國債常用貼現(xiàn)方式發(fā)行。
4.累進利率債券
累進利率債券是指以利率逐年累進方法計息的債券。這種債券的利率不固定,按投資同一債券期限長短累進計息,期限越長,利率越高。
復(fù)利債券的計算公式相關(guān)文章:
1.債券收益計算公式
2.債券的收益計算