初二下冊數(shù)學(xué)重要知識點(diǎn)總結(jié)
數(shù)學(xué)說難也難,說不難也不難。關(guān)于在于如何學(xué)習(xí),不知道同學(xué)對于初二數(shù)學(xué)知識點(diǎn)總結(jié)歸納過沒。下面小編為大家?guī)沓醵聝詳?shù)學(xué)重要知識點(diǎn)總結(jié),希望大家喜歡!
初二下冊數(shù)學(xué)重要知識點(diǎn)
第一章分式
1、分式及其基本性質(zhì)
分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變。
2、分式的運(yùn)算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的'積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;。
異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減。
3、整數(shù)指數(shù)冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數(shù)
1、反比例函數(shù)的表達(dá)式、圖像、性質(zhì)。
圖像:雙曲線。
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2、反比例函數(shù)在實(shí)際問題中的應(yīng)用。
第三章勾股定理
1、勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方。
2、勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形。
第四章四邊形
1、平行四邊形。
性質(zhì):對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個(gè)角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形
性質(zhì):菱形的四條邊都相等;
菱形的對角線互相垂直,并且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;
等腰梯形的兩條對角線相等;
同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差。
初二下冊數(shù)學(xué)知識點(diǎn)總結(jié)
第一章分式
1分式及其基本性質(zhì)
分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2分式的運(yùn)算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p
3整數(shù)指數(shù)冪的加減乘除法
4分式方程及其解法
第二章反比例函數(shù)
1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2反比例函數(shù)在實(shí)際問題中的應(yīng)用
第三章勾股定理
1勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方
2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形
第四章四邊形
1平行四邊形
性質(zhì):對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個(gè)角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等;同一個(gè)底上的.兩個(gè)角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
初二下冊數(shù)學(xué)知識點(diǎn)歸納
1、分式的定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子B叫做分式。
2、對于分式概念的理解,應(yīng)把握以下幾點(diǎn):
(1)分式是兩個(gè)整式相除的商。其中分子是被除式,分母是除式,分?jǐn)?shù)線起除號和括號的作用;
(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;
(3)分母不能為零。
3、分式有意義、無意義的條件
(1)分式有意義的條件:分式的分母不等于0;
(2)分式無意義的條件:分式的分母等于0。
4、分式的值為0的條件:
當(dāng)分式的分子等于0,而分母不等于0時(shí),分式的值為0。即,使B=0的條件是:A=0,B≠0。
5、有理式整式和分式統(tǒng)稱為有理式。整式分為單項(xiàng)式和多項(xiàng)式。分類:有理式
單項(xiàng)式:由數(shù)與字母的乘積組成的代數(shù)式;多項(xiàng)式:由幾個(gè)單項(xiàng)式的和組成的代數(shù)式。
只要這樣踏踏實(shí)實(shí)完成每天的計(jì)劃和小目標(biāo),就可以自如地應(yīng)對新學(xué)習(xí),達(dá)到長遠(yuǎn)目標(biāo)。由數(shù)學(xué)網(wǎng)為您提供的初二下冊數(shù)學(xué)知識點(diǎn)歸納:分式的概念,祝您學(xué)習(xí)愉快!
初二下冊數(shù)學(xué)重要知識點(diǎn)總結(jié)相關(guān)文章:
★ 八年級數(shù)學(xué)下冊知識點(diǎn)梳理
★ 八年級數(shù)學(xué)下冊知識點(diǎn)整理
★ 滬科版八年級數(shù)學(xué)知識點(diǎn)下冊