高中數(shù)學知識點總結
盡管數(shù)學在生活中可能不會直接應用到所有情境中,但它對我們的思維方式和認知能力有著重要的影響。下面是小編為大家?guī)淼?/span>高中數(shù)學知識點總結,希望大家能夠喜歡!快來看看吧!
三角函數(shù)
1.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
3. 在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)
5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是
6.你還記得某些特殊角的三角函數(shù)值嗎?
7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
解決不等式的有關問題:
(1)不等式恒成立問題(絕對不等式問題)可考慮值域.
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0.
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0.
簡單隨機抽樣的定義:
一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
解析幾何
1.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
2.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
4. 定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
5. 對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
6. 直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
7.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。
①設出變量,寫出目標函數(shù)
②寫出線性約束條件
③畫出可行域
④作出目標函數(shù)對應的系列平行線,找到并求出最優(yōu)解
8.三種圓錐曲線的定義、圖形、標準方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?
10.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
11. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結論?)
12. 在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
13.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標系了,是否需要建立直角坐標系?
正弦、余弦典型例題
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。