六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級數(shù)學(xué) > 人教版八年級上數(shù)學(xué)期末考試試卷(2)

人教版八年級上數(shù)學(xué)期末考試試卷(2)

時間: 妙純901 分享

人教版八年級上數(shù)學(xué)期末考試試卷

  故答案為: .

  【點評】此題主要考查了整式的除法,解答此題的關(guān)鍵是熟練掌握整式的除法法則:(1)單項式除以單項式,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式.(2)多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加.

  14.如圖,E、C、F、C四點在一條直線上,EB=FC,∠A=∠D,再添一個條件就能證明△ABC≌△DEF,這個條件可以是 ∠ABC=∠E. (只寫一個即可).

  【考點】全等三角形的判定.

  【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,所以根據(jù)全等三角形的判定定理添加一組對應(yīng)角相等即可.

  【解答】解:添加∠ABC=∠E.理由如下:

  ∵EB=FC,

  ∴BC=EF,

  在△ABC與△DEF中, ,

  ∴△ABC≌△DEF(AAS).

  故答案是:∠ABC=∠E.

  【點評】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

  注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.

  15.如圖,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,則∠A= 80° .

  【考點】三角形內(nèi)角和定理.

  【分析】首先根據(jù)BI平分∠ABC,CI平分∠ACB,推得∠IBC+∠ICB= (∠ABC+∠ACB);然后根據(jù)三角形的內(nèi)角和定理,求出∠IBC、∠ICB的度數(shù)和,進(jìn)而求出∠A的度數(shù)是多少即可.

  【解答】解:∵BI平分∠ABC,CI平分∠ACB,

  ∴∠IBC= ,∠ICB= ∠ACB,

  ∴∠IBC+∠ICB= (∠ABC+∠ACB),

  ∵∠BIC=130°,

  ∴∠IBC+∠ICB=180°﹣130°=50°,

  ∴∠ABC+∠ACB=50°×2=100°,

  ∴∠A=180°﹣100°=80°.

  故答案為:80°.

  【點評】(1)此題主要考查了三角形的內(nèi)角和定理,要熟練掌握,解答此題的關(guān)鍵是要明確:三角形的內(nèi)角和是180°.

  (2)此題還考查了角平分線的性質(zhì)和應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:一個角的平分線把這個角分成兩個大小相同的角.

  16.如果(x+p)(x+q)=x2+mx+2(p,q為整數(shù)),則m= ±3 .

  【考點】多項式乘多項式.

  【分析】根據(jù)多項式乘以多項式法則展開,即可得出p+q=m,pq=2,根據(jù)p、q為整數(shù)得出兩種情況,求出m即可.

  【解答】解:(x+p)(x+q)=x2+mx+2,

  x2+(p+q)x+pq=x2+mx+2,

  ∴p+q=m,pq=2,

  ∵p,q為整數(shù),

  ∴①p=1,q=2或p=2,q=1,此時m=3;

 ?、趐=﹣1,q=﹣2或p=﹣2,q=﹣1,此時m=﹣3;

  故答案為:±3.

  【點評】本題考查了多項式乘以多項式法則的應(yīng)用,能求出p、q的值是解此題的關(guān)鍵,注意:(a+b)(m+n)=am+an+bm+bn.

  三、解答題(共5小題,滿分52分)

  17.(1)分解因式:a3b﹣ab3

  (2)解方程: +1= .

  【考點】提公因式法與公式法的綜合運用;解分式方程.

  【專題】因式分解;分式方程及應(yīng)用.

  【分析】(1)原式提取公因式,再利用平方差公式分解即可;

  (2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.

  【解答】解:(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b);

  (2)去分母得:3+x﹣2=3﹣x,

  解得:x=1,

  經(jīng)檢驗x=1是分式方程的解.

  【點評】此題考查了提公因式法與公式法的綜合運用,以及解分式方程,熟練掌握運算法則是解本題的關(guān)鍵.

  18.(10分)(2015秋•天河區(qū)期末)先化簡,再求值:(x﹣4)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.

  【考點】整式的混合運算—化簡求值.

  【分析】本題應(yīng)對代數(shù)式去括號,合并同類項,從而將整式化為最簡形式,然后把x、y的值代入即可.

  【解答】解:(x﹣4)(x+4y)+(3x﹣4y)2,

  =x2+4xy﹣4x﹣16y+9x2﹣24xy+16y2

  =10x2﹣20xy﹣4x﹣16y+16y2,

  把x=2,y=﹣1代入10x2﹣20xy﹣4x﹣16y+16y2=40+40﹣8+16+16=104.

  【點評】本題考查了整式的化簡,整式的混合運算實際上就是去括號、合并同類項,這是各地中考的??键c.

  19.如圖,已知M、N分別是∠AOB的邊OA上任意兩點.

  (1)尺規(guī)作圖:作∠AOB的平分線OC;

  (2)在∠AOB的平分線OC上求作一點P,使PM+PN的值最小.(保留作圖痕跡,不寫畫法)

  【考點】軸對稱-最短路線問題;作圖—基本作圖.

  【分析】(1)以點O為圓心,以任意長為半徑畫弧,與邊OA、OB分別相交于點M、N,再以點M、N為圓心,以大于 MN長為半徑,畫弧,在∠AOB內(nèi)部相交于點C,作射線OC即為∠AOB的平分線;

  (2)找到點M關(guān)于OC對稱點M′,過點M′作M′N⊥OA于點N,交OC于點P,則此時PM+PN的值最小.

  【解答】解:(1)如圖1所示,OC即為所求作的∠AOB的平分線.

  (2)如圖2,作點M關(guān)于OC的對稱點M′,連接M′N交OC于點P,

  則M′B的長度即為PM+PN的值最小.

  【點評】本題考查了利用軸對稱的知識尋找最短路徑的知識,涉及到兩點之間線段最短、垂線段最短的知識,有一定難度,正確確定點P及點N的位置是關(guān)鍵.

  20.如圖,△ABC中,BD平分∠ABC,CD平分∠ACB,過點D作EF∥BC,與AB、AC分別相交于E、F.若已知AB=9,AC=7,BC=8,求△AEF的周長.

  【考點】等腰三角形的判定與性質(zhì);平行線的性質(zhì).

  【分析】要求周長,就要先求出三角形的邊長,這就要借助平行線及角平分線的性質(zhì)把通過未知的轉(zhuǎn)化成已知的來計算.

  【解答】解:∵BD是角平分線,

  ∴∠ABD=∠CBD,

  ∵FE∥BC,

  ∴∠DBC=∠DBE,

  ∴∠DBE=∠EDB,

  ∴BE=ED,

  同理DF=DC,

  ∴△AED的周長=AE+AF+EF=AB+AC=9+7=16.

  【點評】本題考查等腰三角形的性質(zhì)平行線的性質(zhì)角平分線的性質(zhì);有效的進(jìn)行線段的等量代換是正確解答本題的關(guān)鍵.

  21.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.

  (1)證明:△BCE≌△CAD;

  (2)若AD=25cm,BE=8cm,求DE的長.

  【考點】全等三角形的判定與性質(zhì).

  【分析】(1)根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質(zhì)求出∠ACD=∠CBE,根據(jù)AAS證明△BCE≌△CAD;

  (2)根據(jù)全等三角形的對應(yīng)邊相等得到AD=CE,BE=CD,利用DE=CE﹣CD,即可解答.

  【解答】解:(1)∵∠ACB=90°,BE⊥CE,AD⊥CE,

  ∴∠BEC=∠ACB=∠ADC=90°,

  ∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,

  ∴∠ACD=∠CBE,

  在△BCE和△CAD中,

  ,

  ∴△BCE≌△CAD;

  (2)∵△BCE≌△CAD,

  ∴AD=CE,BE=CD,

  ∴DE=CE﹣CD=AD﹣BE=25﹣8=17(cm).

  【點評】本題考查了全等三角形的性質(zhì)和判定,垂線的定義等知識點的應(yīng)用,解此題的關(guān)鍵是推出證明△ADC和△CEB全等的三個條件.

  四.綜合測試

  22.如果x﹣y=4,xy=2,求下列多項式的值:

  (1)x2+y2

  (2)2x(x2+3y2)﹣6x2(x+y)+4x3.

  【考點】整式的混合運算—化簡求值.

  【分析】(1)根據(jù)完全平方公式:(a±b)2=a2±2ab+b2,解答即可;

  (2)先化簡后再根據(jù)完全平方公式:(a±b)2=a2±2ab+b2,解答即可.

  【解答】解:(1)x2+y2=(x﹣y)2+2xy=16+4=20;

  (2)2x(x2+3y2)﹣6x2(x+y)+4x3.

  =2x3+6xy2﹣6x3﹣6x2y+4x3

  =6xy(y﹣x)

  =6×2×(﹣4)

  =﹣48.

  【點評】此題主要考查了完全平方公式的應(yīng)用,熟練掌握完全平方公式的形式是解題關(guān)鍵.

  23.已知A= ﹣ ,B=2x2+4x+2.

  (1)化簡A,并對B進(jìn)行因式分解;

  (2)當(dāng)B=0時,求A的值.

  【考點】分式的化簡求值;解一元二次方程-配方法.

  【分析】(1)先根據(jù)分式混合運算的法則把A進(jìn)行化簡,對B進(jìn)行因式分解即可;

  (2)根據(jù)B=0求出x的值,代入A式進(jìn)行計算即可.

  【解答】解:(1)A= ﹣

  = ﹣

  = ﹣

  =

  = ;

  B=2x2+4x+2=2(x2+2x+1)=2(x+1)2;

  (2)∵B=0,

  ∴2(x+1)2=0,

  ∴x=﹣1.

  當(dāng)x=﹣1時,A= = =﹣2.

  【點評】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關(guān)鍵.

  24.(13分)(2015秋•天河區(qū)期末)如圖,在平面直角坐標(biāo)系中,點A的縱坐標(biāo)為2,點B在x軸的負(fù)半軸上,AB=AO,∠ABO=30°,直線MN經(jīng)過原點O,點A關(guān)于直線MN的對稱點A1在x軸的正半軸上.

  (1)求點B關(guān)于直線MN的對稱點B1的橫坐標(biāo);

  (2)求證:AB+BO=AB1.

  【考點】全等三角形的判定與性質(zhì);坐標(biāo)與圖形變化-對稱.

  【分析】(1)過A作AC⊥x軸于C,過B作BD⊥x軸于D,根據(jù)點A的縱坐標(biāo)為1求出AO=2,OC= ,BO=2 =OB1,根據(jù)∠B1DO=90°和∠DOB1=30°求出OD即可;

  (2)根據(jù)軸對稱得出線段AB1線段A1B關(guān)于直線MN對稱,求出AB1=A1B,根據(jù)A1B=A1O+BO和A1O=AO推出即可.

  【解答】解:(1)如圖,過A作AC⊥x軸于C,過B1作BD⊥x軸于D,

  ∵點A的縱坐標(biāo)為2,

  ∴AC=2,

  ∵AB=AO,∠ABO=30°,

  ∴AO=2,OC= ,BO=2 =OB1,

  ∵∠B1DO=90°,∠DOB1=30°,

  ∴B1D= ,OD= B1D=3,

  ∴點B關(guān)于直線MN的對稱點B1的橫坐標(biāo)3;

  (2)∵A關(guān)于直線MN的對稱點A1在x軸的正半軸上,點B關(guān)于直線MN的對稱點為B1,

  ∴線段AB1線段A1B關(guān)于直線MN對稱,

  ∴AB1=A1B,

  而A1B=A1O+BO,A1O=AO,

  ∴AB1=AO+BO.

  【點評】本題考查了含30度角的直角三角形性質(zhì),軸對稱性質(zhì),線段垂直平分線性質(zhì),勾股定理的應(yīng)用,解決本題的關(guān)鍵是作出輔助線.

  25.已知A(m,n),且滿足|m﹣2|+(n﹣2)2=0,過A作AB⊥y軸,垂足為B.

  (1)求A點坐標(biāo).

  (2)如圖1,分別以AB,AO為邊作等邊△ABC和△AOD,試判定線段AC和DC的數(shù)量關(guān)系和位置關(guān)系,并說明理由.

  (3)如圖2,過A作AE⊥x軸,垂足為E,點F、G分別為線段OE、AE上的兩個動點(不與端點重合),滿足∠FBG=45°,設(shè)OF=a,AG=b,F(xiàn)G=c,試探究 ﹣a﹣b的值是否為定值?如果是求此定值;如果不是,請說明理由.

  【考點】全等三角形的判定與性質(zhì);坐標(biāo)與圖形性質(zhì);等邊三角形的性質(zhì).

  【分析】(1)根據(jù)非負(fù)數(shù)的性子可得m、n的值;

  (2)連接OC,由AB=BO知∠BAO=∠BOA=45°,由△ABC,△OAD為等邊三角形知∠BAC=∠OAD=∠AOD=60°、OA=OD,繼而由∠BAC﹣∠OAC=∠OAD﹣∠OAC得∠DAC=∠BAO=45°,根據(jù)OB=CB=2、∠OBC=30°知∠BOC=75°,∠AOC=∠BAO﹣∠BOA=30°,∠DOC=∠AOC=30°,證△OAC≌△ODC得AC=CD,再根據(jù)∠CAD=∠CDA=45°知∠ACD=90°,從而得AC⊥CD;

  (3)在x軸負(fù)半軸取點M,使得OM=AG=b,連接BG,先證△BAG≌△BOM得∠OBM=∠ABG、BM=BG,結(jié)合∠FBG=45°知∠ABG+∠OBF=45°,從而得∠OBM+∠OBF=45°,∠MBF=∠GBF,再證△MBF≌△GBF得MF=FG,即a+b=c,代入原式可得答案.

  【解答】解(1)由題得m=2,n=2,

  ∴A(2,2);

  (2)如圖1,連結(jié)OC,

  由(1)得AB=BO=2,

  ∴△ABO為等腰直角三角形,

  ∴∠BAO=∠BOA=45°,

  ∵△ABC,△OAD為等邊三角形,

  ∴∠BAC=∠OAD=∠AOD=60°,OA=OD

  ∴∠BAC﹣∠OAC=∠OAD﹣∠OAC

  即∠DAC=∠BAO=45°

  在△OBC中,OB=CB=2,∠OBC=30°,

  ∴∠BOC=75°,

  ∴∠AOC=∠BAO﹣∠BOA=30°,

  ∴∠DOC=∠AOC=30°,

  在△OAC和△ODC中,

  ∵ ,

  ∴△OAC≌△ODC,

  ∴AC=CD,

  ∴∠CAD=∠CDA=45°,

  ∴∠ACD=90°,

  ∴AC⊥CD;

  (3)如圖,在x軸負(fù)半軸取點M,使得OM=AG=b,連接BG,

  在△BAG和△BOM中,

  ∵ ,

  ∴△BAG≌△BOM

  ∴∠OBM=∠ABG,BM=BG

  又∠FBG=45°

  ∴∠ABG+∠OBF=45°

  ∴∠OBM+∠OBF=45°

  ∴∠MBF=∠GBF

  在△MBF和△GBF中,

  ∵ ,

  ∴△MBF≌△GBF

  ∴MF=FG

  ∴a+b=c代入原式=0.

  【點評】本題主要考查全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵

  看了“人教版八年級上數(shù)學(xué)期末考試試卷”的人還看了:

1.人教版八年級上冊數(shù)學(xué)期末試卷及答案

2.八年級上冊數(shù)學(xué)期末試卷附答案

3.八年級數(shù)學(xué)上冊期末試卷及答案

4.八年級上冊數(shù)學(xué)期末試卷及答案

5.八年級上冊數(shù)學(xué)期末考試試卷

2593027