初二數(shù)學(xué)分式知識點總結(jié)
分式方程是方程中的一種,且分母里含有未知數(shù)的(有理)方程叫做分式方程。下面是學(xué)習(xí)啦小編為大家收集整理的初二數(shù)學(xué)分式知識點總結(jié),相信這些文字對你會有所幫助的。
初二數(shù)學(xué)分式知識點總結(jié):
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
?、夙棓?shù):三項
?、谟袃身検莾蓚€數(shù)的的平方和,這兩項的符號相同。
?、塾幸豁検沁@兩個數(shù)的積的兩倍。
(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)?(a+b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當(dāng)多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當(dāng)多項式各項的公因式是隱含的時候,要把多項式進(jìn)行適當(dāng)?shù)淖冃?,或改變符號,直到可確定多項式的公因式.
2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于
一次項的系數(shù).
2.將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:
?、倭谐龀?shù)項分解成兩個因數(shù)的積各種可能情況;
?、趪L試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù).
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進(jìn)行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.
(八)分?jǐn)?shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點是保持分式的值不變.
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進(jìn)一步運算作準(zhǔn)備.
4.通分的依據(jù):分式的基本性質(zhì).
5.通分的關(guān)鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉(zhuǎn)化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.
10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.
(九)含有字母系數(shù)的一元一次方程
1.含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。