初二數(shù)學(xué)期末復(fù)習(xí)知識
初二數(shù)學(xué)期末復(fù)習(xí)知識
隨著期末的來臨,你做好復(fù)習(xí)準(zhǔn)備了嗎?下面是學(xué)習(xí)啦小編為大家收集整理的初二數(shù)學(xué)期末復(fù)習(xí)知識,相信這些文字對你會有所幫助的。
初二數(shù)學(xué)期末復(fù)習(xí)知識:
(一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
①項(xiàng)數(shù):三項(xiàng)
?、谟袃身?xiàng)是兩個數(shù)的的平方和,這兩項(xiàng)的符號相同。
③有一項(xiàng)是這兩個數(shù)的積的兩倍。
(3)當(dāng)多項(xiàng)式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項(xiàng)式因式都不能再分解為止。
(五)分組分解法
我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)??(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個因式正好相同,那么這個多項(xiàng)式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運(yùn)用提取公因式法把一個多項(xiàng)式因式分解時,首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個多項(xiàng)式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個多項(xiàng)式因式看作一個整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃?,或改變符號,直到可確定多項(xiàng)式的公因式.
2. 運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數(shù)項(xiàng)分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于
一次項(xiàng)的系數(shù).
2.將常數(shù)項(xiàng)分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:
?、?列出常數(shù)項(xiàng)分解成兩個因數(shù)的積各種可能情況;
②嘗試其中的哪兩個因數(shù)的和恰好等于一次項(xiàng)系數(shù).
3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分。
2.分式進(jìn)行約分的目的是要把這個分式化為最簡分式。
3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。
4.分式約分中注意正確運(yùn)用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方。
6.注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減。
(八)分?jǐn)?shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
4.通分的依據(jù):分式的基本性質(zhì).
5.通分的關(guān)鍵:確定幾個分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p。
9.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式。
(九)含有字母系數(shù)的一元一次方程
1.含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個方程就是一個含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。
10.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個分子是個整體,要適時添上括號。
11.對于整式和分式之間的加減運(yùn)算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。
12.異分母分式的加減運(yùn)算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化。