六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級(jí)數(shù)學(xué) > 人教版八年級(jí)數(shù)學(xué)下單元同步測(cè)試

人教版八年級(jí)數(shù)學(xué)下單元同步測(cè)試

時(shí)間: 礎(chǔ)鴻1124 分享

人教版八年級(jí)數(shù)學(xué)下單元同步測(cè)試

  八年級(jí)數(shù)學(xué)單元同步測(cè)試一定按時(shí)做,馬虎不得。沒(méi)有目標(biāo)就沒(méi)有方向,每一個(gè)學(xué)習(xí)階段都應(yīng)該給自己樹(shù)立一個(gè)目標(biāo)。 下面由學(xué)習(xí)啦小編為你整理的人教版八年級(jí)數(shù)學(xué)下單元同步測(cè)試,希望對(duì)大家有幫助!

  人教版八年級(jí)數(shù)學(xué)下單元同步測(cè)試

  一、選擇題

  1.等腰三角形的兩邊長(zhǎng)分別為3和6,則這個(gè)等腰三角形的周長(zhǎng)為(  )

  A.12 B.15 C.12或15 D.18

  2.如圖,△ABC中,AB=AC,∠A=36°,BD是AC邊上的高,則∠DBC的度數(shù)是(  )

  A.18° B.24° C.30° D.36°

  3.工人師傅常用角尺平分一個(gè)任意角.做法如下:如圖,∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,移動(dòng)角尺,使角尺兩邊相同的刻度分別與M,N重合.過(guò)角尺頂點(diǎn)C作射線OC.由此做法得△MOC≌△NOC的依據(jù)是(  )

  A.AAS B.SAS C.ASA D.SSS

  4.如圖,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,則下列結(jié)論錯(cuò)誤的是(  )

  A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN

  5.已知一等腰三角形的腰長(zhǎng)為5,底邊長(zhǎng)為4,底角為β.滿足下列條件的三角形不一定與已知三角形全等的是(  )

  A.兩條邊長(zhǎng)分別為4,5,它們的夾角為β

  B.兩個(gè)角是β,它們的夾邊為4

  C.三條邊長(zhǎng)分別是4,5,5

  D.兩條邊長(zhǎng)是5,一個(gè)角是β

  6.如圖,在△ABC中,AB=AC,點(diǎn)D、E在BC上,連接AD、AE,如果只添加一個(gè)條件使∠DAB=∠EAC,則添加的條件不能為(  )

  A.BD=CE B.AD=AE C.DA=DE D.BE=CD

  二、填空題

  7.如圖,在△ABC中,AB=AD=DC,∠BAD=20°,則∠C=  .

  8.在等腰三角形中,馬彪同學(xué)做了如下研究:已知一個(gè)角是60°,則另兩個(gè)角是唯一確定的(60°,60°),已知一個(gè)角是90°,則另兩個(gè)角也是唯一確定的(45°,45°),已知一個(gè)角是120°,則另兩個(gè)角也是唯一確定的(30°,30°).由此馬彪同學(xué)得出結(jié)論:在等腰三角形中,已知一個(gè)角的度數(shù),則另兩個(gè)角的度數(shù)也是唯一確定的.馬彪同學(xué)的結(jié)論是  的.(填“正確”或“錯(cuò)誤”)

  9.如圖所示,直線a經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為  .

  10.如圖,如果兩個(gè)三角形的兩條邊和其中一條邊上的高對(duì)應(yīng)相等,那么這兩個(gè)三角形的第三邊所對(duì)的角的關(guān)系是  .

  三、解答題

  11.已知:如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),作∠EAB=∠BAD,AE邊交CB的延長(zhǎng)線于點(diǎn)E,延長(zhǎng)AD到點(diǎn)F,使AF=AE,連結(jié)CF.

  求證:BE=CF.

  12.如圖,△ABC與△DCB中,AC與BD交于點(diǎn)E,且∠A=∠D,AB=DC.

  (1)求證:△ABE≌DCE;

  (2)當(dāng)∠AEB=50°,求∠EBC的度數(shù)?

  13.在△ABC中,AB=AC,D是線段BC的延長(zhǎng)線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

  (1)如圖1,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng),若∠BAC=30°,則∠DCE=  .

  (2)設(shè)∠BAC=α,∠DCE=β:

 ?、偃鐖D1,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

  ②當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.

  《第1章 三角形的證明》

  人教版八年級(jí)數(shù)學(xué)下單元同步測(cè)試參考答案與試題解析

  一、選擇題

  1.等腰三角形的兩邊長(zhǎng)分別為3和6,則這個(gè)等腰三角形的周長(zhǎng)為(  )

  A.12 B.15 C.12或15 D.18

  【考點(diǎn)】等腰三角形的性質(zhì);三角形三邊關(guān)系.

  【分析】因?yàn)橐阎L(zhǎng)度為3和6兩邊,沒(méi)有明確是底邊還是腰,所以有兩種情況,需要分類(lèi)討論.

  【解答】解:①當(dāng)3為底時(shí),其它兩邊都為6,

  3、6、6可以構(gòu)成三角形,

  周長(zhǎng)為15;

 ?、诋?dāng)3為腰時(shí),

  其它兩邊為3和6,

  ∵3+3=6=6,

  ∴不能構(gòu)成三角形,故舍去,

  ∴答案只有15.

  故選B.

  【點(diǎn)評(píng)】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒(méi)有明確腰和底邊的題目一定要想到兩種情況,分類(lèi)進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.

  2.如圖,△ABC中,AB=AC,∠A=36°,BD是AC邊上的高,則∠DBC的度數(shù)是(  )

  A.18° B.24° C.30° D.36°

  【考點(diǎn)】等腰三角形的性質(zhì).

  【分析】根據(jù)已知可求得兩底角的度數(shù),再根據(jù)三角形內(nèi)角和定理不難求得∠DBC的度數(shù).

  【解答】解:∵AB=AC,∠A=36°,

  ∴∠ABC=∠ACB=72°

  ∵BD是AC邊上的高,

  ∴BD⊥AC,

  ∴∠DBC=90°﹣72°=18°.

  故選A.

  【點(diǎn)評(píng)】本題主要考查等腰三角形的性質(zhì),解答本題的關(guān)鍵是會(huì)綜合運(yùn)用等腰三角形的性質(zhì)和三角形的內(nèi)角和定理進(jìn)行答題,此題難度一般.

  3.工人師傅常用角尺平分一個(gè)任意角.做法如下:如圖,∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,移動(dòng)角尺,使角尺兩邊相同的刻度分別與M,N重合.過(guò)角尺頂點(diǎn)C作射線OC.由此做法得△MOC≌△NOC的依據(jù)是(  )

  A.AAS B.SAS C.ASA D.SSS

  【考點(diǎn)】全等三角形的判定;作圖—基本作圖.

  【分析】利用全等三角形判定定理AAS、SAS、ASA、SSS對(duì)△MOC和△NOC進(jìn)行分析,即可作出正確選擇.

  【解答】解:∵OM=ON,CM=CN,OC為公共邊,

  ∴△MOC≌△NOC(SSS).

  故選D.

  【點(diǎn)評(píng)】此題主要考查學(xué)生對(duì)全等三角形判定定理的理解和掌握,此題難度不大,屬于基礎(chǔ)題.

  4.如圖,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,則下列結(jié)論錯(cuò)誤的是(  )

  A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN

  【考點(diǎn)】全等三角形的判定與性質(zhì).

  【專(zhuān)題】證明題.

  【分析】由∠E=∠F,∠B=∠C,AE=AF,可證明△AEB≌△AFC,利用全等三角形的性質(zhì)進(jìn)行判斷.

  【解答】解:∵在△AEB和△AFC中,∠E=∠F,∠B=∠C,AE=AF,

  ∴△AEB≌△AFC(AAS),

  ∴BE=CF,∠EAB=∠FAC,

  ∴∠EAM=∠FAN,故選項(xiàng)A、B正確;

  ∵∠EAM=∠FAN,∠E=∠F,AE=AF,

  ∴△ACN≌△ABM,故選項(xiàng)C正確;

  錯(cuò)誤的是D.

  故選D.

  【點(diǎn)評(píng)】本題考查了全等三角形的判定與性質(zhì).關(guān)鍵是根據(jù)已知條件確定全等三角形.

  5.已知一等腰三角形的腰長(zhǎng)為5,底邊長(zhǎng)為4,底角為β.滿足下列條件的三角形不一定與已知三角形全等的是(  )

  A.兩條邊長(zhǎng)分別為4,5,它們的夾角為β

  B.兩個(gè)角是β,它們的夾邊為4

  C.三條邊長(zhǎng)分別是4,5,5

  D.兩條邊長(zhǎng)是5,一個(gè)角是β

  【考點(diǎn)】全等三角形的判定;等腰三角形的性質(zhì).

  【分析】根據(jù)全等三角形的判定方法對(duì)各選項(xiàng)分析判斷后利用排除法求解.

  【解答】解:A、兩條邊長(zhǎng)分別為4,5,它們的夾角為β,可以利用“邊角邊”證明三角形與已知三角形全等,故本選項(xiàng)錯(cuò)誤;

  B、兩個(gè)角是β,它們的夾邊為4,可以利用“角邊角”證明三角形與已知三角形全等,故本選項(xiàng)錯(cuò)誤;

  C、三條邊長(zhǎng)分別是4,5,5,可以利用“邊邊邊”證明三角形與已知三角形全等,故本選項(xiàng)錯(cuò)誤;

  D、兩條邊長(zhǎng)是5,角β如果是底角,則頂角為(180°﹣2β),則轉(zhuǎn)化為“角邊角”,利用ASA證明三角形與已知三角形全等;當(dāng)角β如果是頂角時(shí),底角為(180°﹣β)÷2,此時(shí)兩三角形不一定全等.故本選項(xiàng)正確.

  故選D.

  【點(diǎn)評(píng)】本題考查了全等三角形的判定,等腰三角形的性質(zhì),判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.

  6.如圖,在△ABC中,AB=AC,點(diǎn)D、E在BC上,連接AD、AE,如果只添加一個(gè)條件使∠DAB=∠EAC,則添加的條件不能為(  )

  A.BD=CE B.AD=AE C.DA=DE D.BE=CD

  【考點(diǎn)】等腰三角形的性質(zhì).

  【專(zhuān)題】壓軸題.

  【分析】根據(jù)全等三角形的判定與性質(zhì),等邊對(duì)等角的性質(zhì)對(duì)各選項(xiàng)分析判斷后利用排除法求解.

  【解答】解:A、添加BD=CE,可以利用“邊角邊”證明△ABD和△ACE全等,再根據(jù)全等三角形對(duì)應(yīng)角相等得到∠DAB=∠EAC,故本選項(xiàng)錯(cuò)誤;

  B、添加AD=AE,根據(jù)等邊對(duì)等角可得∠ADE=∠AED,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠DAB=∠EAC,故本選項(xiàng)錯(cuò)誤;

  C、添加DA=DE無(wú)法求出∠DAB=∠EAC,故本選項(xiàng)正確;

  D、添加BE=CD可以利用“邊角邊”證明△ABE和△ACD全等,再根據(jù)全等三角形對(duì)應(yīng)角相等得到∠DAB=∠EAC,故本選項(xiàng)錯(cuò)誤.

  故選C.

  【點(diǎn)評(píng)】本題考查了等腰三角形等邊對(duì)等角的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),全等三角形的判定與性質(zhì),小綜合題,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.

  二、填空題

  7.如圖,在△ABC中,AB=AD=DC,∠BAD=20°,則∠C= 40° .

  【考點(diǎn)】三角形的外角性質(zhì);三角形內(nèi)角和定理.

  【分析】先根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理可求出∠B的度數(shù),再根據(jù)三角形外角的性質(zhì)可求出∠ADC的度數(shù),再由三角形內(nèi)角和定理解答即可.

  【解答】解:∵AB=AD,∠BAD=20°,

  ∴∠B= = =80°,

  ∵∠ADC是△ABD的外角,

  ∴∠ADC=∠B+∠BAD=80°+20°=100°,

  ∵AD=DC,

  ∴∠C= = =40°.

  【點(diǎn)評(píng)】本題涉及到三角形的內(nèi)角和定理、三角形外角的性質(zhì)及等腰三角形的性質(zhì),屬較簡(jiǎn)單題目.

  8.在等腰三角形中,馬彪同學(xué)做了如下研究:已知一個(gè)角是60°,則另兩個(gè)角是唯一確定的(60°,60°),已知一個(gè)角是90°,則另兩個(gè)角也是唯一確定的(45°,45°),已知一個(gè)角是120°,則另兩個(gè)角也是唯一確定的(30°,30°).由此馬彪同學(xué)得出結(jié)論:在等腰三角形中,已知一個(gè)角的度數(shù),則另兩個(gè)角的度數(shù)也是唯一確定的.馬彪同學(xué)的結(jié)論是 錯(cuò)誤 的.(填“正確”或“錯(cuò)誤”)

  【考點(diǎn)】等腰三角形的性質(zhì).

  【分析】分別把已知角看做等腰三角形的頂角和底角,分兩種情況考慮,利用三角形內(nèi)角和是180度計(jì)算即可.

  【解答】解:如已知一個(gè)角=70°.

  當(dāng)70°為頂角時(shí),另外兩個(gè)角是底角,它們的度數(shù)是相等的,為(180°﹣70°)÷2=55°,

  當(dāng)70°為底角時(shí),另外一個(gè)底角也是70°,頂角是180°﹣140°=40°.

  故答案為:錯(cuò)誤.

  【點(diǎn)評(píng)】主要考查了等腰三角形的性質(zhì).要注意分兩種情況考慮,不要漏掉一種情況.

  9.如圖所示,直線a經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為 13 .

  【考點(diǎn)】全等三角形的判定與性質(zhì);正方形的性質(zhì).

  【專(zhuān)題】壓軸題.

  【分析】根據(jù)正方形的性質(zhì)、直角三角形兩個(gè)銳角互余以及等量代換可以證得△AFB≌△AED;然后由全等三角形的對(duì)應(yīng)邊相等推知AF=DE、BF=AE,所以EF=AF+AE=13.

  【解答】解:∵ABCD是正方形(已知),

  ∴AB=AD,∠ABC=∠BAD=90°;

  又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,

  ∴∠FBA=∠EAD(等量代換);

  ∵BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,

  ∴在Rt△AFB和Rt△AED中,

  ∵ ,

  ∴△AFB≌△AED(AAS),

  ∴AF=DE=8,BF=AE=5(全等三角形的對(duì)應(yīng)邊相等),

  ∴EF=AF+AE=DE+BF=8+5=13.

  故答案為:13.

  【點(diǎn)評(píng)】本題考查了全等三角形的判定、正方形的性質(zhì).實(shí)際上,此題就是將EF的長(zhǎng)度轉(zhuǎn)化為與已知長(zhǎng)度的線段DE和BF數(shù)量關(guān)系.

  10.如圖,如果兩個(gè)三角形的兩條邊和其中一條邊上的高對(duì)應(yīng)相等,那么這兩個(gè)三角形的第三邊所對(duì)的角的關(guān)系是 相等或互補(bǔ) .

  【考點(diǎn)】全等三角形的性質(zhì).

  【分析】第三邊所對(duì)的角即為前兩邊的夾角.分兩種情況,一種是兩個(gè)銳角或兩個(gè)鈍角三角形,另一種是一個(gè)鈍角三角形和一個(gè)銳角三角形.

  【解答】解:當(dāng)兩個(gè)三角形同為銳角或同為鈍角三角形時(shí),

  易得兩三角形全等,則第三邊所對(duì)的角是相等關(guān)系;

  當(dāng)一個(gè)鈍角三角形和一個(gè)銳角三角形時(shí)(如圖),

  則第三邊所對(duì)的一個(gè)角與另一個(gè)角的鄰補(bǔ)角相等,即這兩個(gè)角是互補(bǔ)關(guān)系.

  故填“相等或互補(bǔ)”.

  【點(diǎn)評(píng)】本題考查全等三角形的性質(zhì),應(yīng)注意的是,兩邊相等不一定角相等,解題時(shí)要多方面考慮.

  三、解答題

  11.已知:如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),作∠EAB=∠BAD,AE邊交CB的延長(zhǎng)線于點(diǎn)E,延長(zhǎng)AD到點(diǎn)F,使AF=AE,連結(jié)CF.

  求證:BE=CF.

  【考點(diǎn)】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).

  【專(zhuān)題】證明題.

  【分析】根據(jù)等腰三角形的性質(zhì)可得∠CAD=∠BAD,由等量關(guān)系可得∠CAD=∠EAB,有SAS可證△ACF≌△ABE,再根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得證.

  【解答】證明:∵AB=AC,點(diǎn)D是BC的中點(diǎn),

  ∴∠CAD=∠BAD.

  又∵∠EAB=∠BAD,

  ∴∠CAD=∠EAB.

  在△ACF和△ABE中,

  ∴△ACF≌△ABE(SAS).

  ∴BE=CF.

  【點(diǎn)評(píng)】此題考查了等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度中等,注意掌握數(shù)形結(jié)合思想的應(yīng)用.

  12.如圖,△ABC與△DCB中,AC與BD交于點(diǎn)E,且∠A=∠D,AB=DC.

  (1)求證:△ABE≌DCE;

  (2)當(dāng)∠AEB=50°,求∠EBC的度數(shù)?

  【考點(diǎn)】全等三角形的判定與性質(zhì).

  【分析】(1)根據(jù)AAS即可推出△ABE和△DCE全等;

  (2)根據(jù)三角形全等得出EB=EC,推出∠EBC=∠ECB,根據(jù)三角形的外角性質(zhì)得出∠AEB=2∠EBC,代入求出即可.

  【解答】(1)證明:∵在△ABE和△DCE中

  ∴△ABE≌△DCE(AAS);

  (2)解:∵△ABE≌△DCE,

  ∴BE=EC,

  ∴∠EBC=∠ECB,

  ∵∠EBC+∠ECB=∠AEB=50°,

  ∴∠EBC=25°.

  【點(diǎn)評(píng)】本題考查了三角形外角性質(zhì)和全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.

  13.在△ABC中,AB=AC,D是線段BC的延長(zhǎng)線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

  (1)如圖1,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng),若∠BAC=30°,則∠DCE= 30° .

  (2)設(shè)∠BAC=α,∠DCE=β:

 ?、偃鐖D1,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

  ②當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.

  【考點(diǎn)】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).

  【分析】(1)證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;

  (2)①證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;

 ?、?alpha;+β=180°或α=β,根據(jù)三角形外角性質(zhì)求出即可.

  【解答】(1)解:∵∠DAE=∠BAC,

  ∴∠DAE+∠CAD=∠BAC+∠CAD,

  ∴∠BAD=∠CAE,

  在△BAD和△CAE中

  ∵ ,

  ∴△BAD≌△CAE(SAS),

  ∴∠B=∠ACE,

  ∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,

  ∴∠BAC=∠DCE,

  ∵∠BAC=30°,

  ∴∠DCE=30°,

  故答案為:30°;

  (2)解:當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α與β之間的數(shù)量關(guān)系是α=β,理由是:

  ∵∠DAE=∠BAC,

  ∴∠DAE+∠CAD=∠BAC+∠CAD,

  ∴∠BAD=∠CAE,

  在△BAD和△CAE中

  ∵ ,

  ∴△BAD≌△CAE(SAS),

  ∴∠B=∠ACE,

  ∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,

  ∴∠BAC=∠DCE,

  ∵∠BAC=α,∠DCE=β,

  ∴α=β;

  (3)解:當(dāng)D在線段BC上時(shí),α+β=180°,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線或反向延長(zhǎng)線上時(shí),α=β.

  【點(diǎn)評(píng)】本題考查了全等三角形的性質(zhì)和判定,三角形的外角性質(zhì)等知識(shí)點(diǎn),題目比較典型,是一道證明過(guò)程類(lèi)似的題目.

3718784