七年級(jí)數(shù)學(xué)直線(xiàn)的方程教學(xué)反思
為提升七年級(jí)數(shù)學(xué)直線(xiàn)的方程的教學(xué)質(zhì)量,需要哪些反思呢?接下來(lái)是學(xué)習(xí)啦小編為大家?guī)?lái)的關(guān)于七年級(jí)數(shù)學(xué)直線(xiàn)的方程教學(xué)反思,希望會(huì)給大家?guī)?lái)幫助。
七年級(jí)數(shù)學(xué)直線(xiàn)的方程教學(xué)反思(一)
解析幾何的本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。在本章節(jié)中,學(xué)生將在平面直角坐標(biāo)系中建立直線(xiàn)的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì).用代數(shù)方法研究幾何思路清晰,可以充分運(yùn)用各種公式解題,解題方法自然。但是,代數(shù)方法一個(gè)致命的弱點(diǎn)就是“運(yùn)算量大,解題過(guò)程繁瑣,結(jié)果容易出錯(cuò)”等等,無(wú)疑也影響了解題的質(zhì)量及效率。新課程理念強(qiáng)調(diào):公式教學(xué),不僅要重視公式的應(yīng)用,教師更要充分展示公式的背景,與學(xué)生一道經(jīng)歷公式的形成過(guò)程,同時(shí)在應(yīng)用中鞏固公式。在推導(dǎo)公式的過(guò)程中,要讓學(xué)生充分體驗(yàn)推導(dǎo)中所體現(xiàn)的數(shù)學(xué)思想、方法,從中學(xué)會(huì)學(xué)習(xí),樂(lè)于學(xué)習(xí)。
教學(xué)過(guò)程中學(xué)生對(duì)函數(shù)圖像及其解析式和曲線(xiàn)及方程之間的聯(lián)系與區(qū)別,概念上還是比較模糊的.初中講直線(xiàn),是將其視為一次函數(shù),它的解析式是y=kx+b,圖像是一條直線(xiàn);高中講直線(xiàn),是將其視為一條平面曲線(xiàn)(更確切地講是點(diǎn)的軌跡),它的方程是二元一次方程,而y=kx+b只是直線(xiàn)方程的一種形式.作為函數(shù)解析式的y=kx+b,x是自變量,y是因變量,只有當(dāng)自變量x的值取定,因變量y的值才能確定,它們的地位是“不平等”的.而作為直線(xiàn)方程的y=kx+b,x和y是直線(xiàn)上動(dòng)點(diǎn)的橫坐標(biāo)和縱坐標(biāo),它們的地位是平等的.函數(shù)的解析式一定可以轉(zhuǎn)化為曲線(xiàn)的方程,但曲線(xiàn)的方程卻不一定能夠轉(zhuǎn)化為函數(shù)的解析式.
對(duì)直線(xiàn)的方程的教學(xué)應(yīng)該強(qiáng)調(diào),直線(xiàn)的方程有5種形式,要用哪種形式是與已知條件相關(guān)的。并且在教學(xué)中一定要強(qiáng)調(diào)每種形式的適用范圍,以防漏解。
直線(xiàn)的斜率也是學(xué)生容易忽略的地方,解題時(shí)容易不對(duì)斜率討論而求解,漏掉斜率不存在的情況,在教學(xué)中要反復(fù)強(qiáng)調(diào)的。
借助直線(xiàn)的方程來(lái)研究直線(xiàn)的位置關(guān)系也是學(xué)生第一次接觸,數(shù)與形的結(jié)合,方程與圖像的結(jié)合,是解析幾何的基本研究方法,教學(xué)中應(yīng)反復(fù)強(qiáng)調(diào)方程中的哪些量與圖像中的哪些性質(zhì)相吻合,學(xué)生可以在數(shù)與形之間靈活的轉(zhuǎn)化,那么解析幾何學(xué)起來(lái)就輕松多了。
七年級(jí)數(shù)學(xué)直線(xiàn)的方程教學(xué)反思(二)
一.教學(xué)對(duì)象方面:
本節(jié)課面對(duì)的學(xué)生是文科班位于中等層次的班級(jí)。文科班的學(xué)生對(duì)于數(shù)學(xué)普遍存在畏難情緒,所以在教學(xué)設(shè)計(jì)之初就立足于從簡(jiǎn)到難的思想,所以在教學(xué)過(guò)程中有了從特殊化到一般化的,再?gòu)囊话慊教厥饣@樣兩個(gè)環(huán)節(jié)并且設(shè)計(jì)的數(shù)據(jù)都比較簡(jiǎn)單易算,希望能夠引起學(xué)生學(xué)習(xí)興趣,并從中體會(huì)到數(shù)學(xué)學(xué)習(xí)中解決問(wèn)題的思維過(guò)程。從課堂效果來(lái)看這個(gè)目的基本達(dá)到,學(xué)生課堂反映較好,參與積極,氣氛熱烈。
二.教學(xué)內(nèi)容方面:
本節(jié)課主要解決的問(wèn)題是掌握直線(xiàn)的點(diǎn)斜式方程,斜截式方程。直線(xiàn)是解析幾何部分最基礎(chǔ)的圖形,其方程形式有點(diǎn)斜式,斜截式,兩點(diǎn)式,截距式,一般式這五種形式。在這五種形式中出現(xiàn)最頻繁,最基本的就是點(diǎn)斜式和斜截式。所以對(duì)這兩種形式要做到能夠熟練的根據(jù)條件選擇合適的直線(xiàn)方程形式。在課堂中可以發(fā)現(xiàn)學(xué)生已經(jīng)基本能夠達(dá)到這一點(diǎn)。但是也存在幾個(gè)方面的問(wèn)題,如果直接提供一點(diǎn)一斜率,學(xué)生馬上能夠把直線(xiàn)方程的形式脫口而出。但是如果提供的是傾斜角,對(duì)傾斜角加以適當(dāng)變化的話(huà),部分學(xué)生還是存在一定的困難,有些是對(duì)斜率公式的不熟悉,有些是對(duì)三角函數(shù)公式的不熟悉造成的。說(shuō)明部分學(xué)生對(duì)于三角函數(shù)部分的內(nèi)容基礎(chǔ)不扎實(shí)遺忘率較高,對(duì)于斜率和傾斜角的關(guān)系的理解還是存在疏漏之處,思維嚴(yán)密性需要提高。
三.教學(xué)改進(jìn):
第一需要繼續(xù)強(qiáng)化基本概念的教學(xué),深化學(xué)生對(duì)基本概念的理解??梢酝ㄟ^(guò)一些小練習(xí),如填空,選擇等加強(qiáng)學(xué)生邏輯思維能力的訓(xùn)練。如課堂練習(xí)中的變式還是較好的一種方式。以變式這種方式更易于學(xué)生發(fā)現(xiàn)問(wèn)題的相同與不同之處,如果能夠讓學(xué)生自己加以適當(dāng)?shù)目偨Y(jié),老師再加點(diǎn)評(píng),那效果會(huì)更好。不過(guò)這對(duì)課堂時(shí)間的控制要求較高,所以采用何種方式展開(kāi)需要更多的思考。
第二需要設(shè)置梯度,逐步提高難度。由于本節(jié)課面對(duì)的對(duì)象,而且這是直線(xiàn)方程的第一節(jié)課,所以設(shè)置的內(nèi)容還是簡(jiǎn)單易懂的,但是以后的課程中難度要求還是需要逐步提高綜合應(yīng)用能力,這需要在以后的課程中逐步貫徹。
七年級(jí)數(shù)學(xué)直線(xiàn)的方程教學(xué)反思(三)
直線(xiàn)方程的教學(xué)是在學(xué)習(xí)了直線(xiàn)的傾斜角和斜率公式之后推導(dǎo)引入直線(xiàn)的點(diǎn)斜式方程,進(jìn)一步延伸出其他形式的直線(xiàn)方程和相互轉(zhuǎn)化,為下面直線(xiàn)方程的應(yīng)用如中點(diǎn)公式、距離公式、直線(xiàn)和圓的位置關(guān)系等打下良好的基礎(chǔ)。
以下是在課堂教學(xué)中的幾點(diǎn)體會(huì)和建議:
(一)初步培養(yǎng)了學(xué)生平面解析幾何的思想和一般方法。
在初中,學(xué)生熟知一次函數(shù)y=kx+b(也可以看成是二次方程)的圖象是一條直線(xiàn),但反過(guò)來(lái)任意畫(huà)一條,要同學(xué)們寫(xiě)出方程表達(dá)式,學(xué)生剛開(kāi)始會(huì)無(wú)從下手,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。隨著教學(xué)的展開(kāi),讓學(xué)生逐步形成平面解析幾何的方法,如建立坐標(biāo)啊,設(shè)點(diǎn)啊,建立關(guān)系式啊,得出方程啊等等,初步培養(yǎng)學(xué)生的平面解析幾何思維,為后面學(xué)習(xí)圓、橢圓和相關(guān)圓錐曲線(xiàn)打下良好的基礎(chǔ)。
(二)在教學(xué)中貫徹“精講多練”的教學(xué)改革探索。
我們都知道,對(duì)于職中的學(xué)生,基礎(chǔ)差,底子薄,理解能力差,動(dòng)手能力差,要想讓學(xué)生學(xué)有所得,最好的辦法就是精講多練,提高學(xué)生的動(dòng)手能力。因此在教學(xué)中,我們通常是由練習(xí)引入,簡(jiǎn)單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業(yè),做到每個(gè)內(nèi)容經(jīng)過(guò)三輪的練習(xí),讓學(xué)生能夠很容易的掌握。
(三)注意數(shù)形結(jié)合的教學(xué)。
解析幾何的特點(diǎn)就是形數(shù)結(jié)合,而形數(shù)結(jié)合的思想是一種重要的數(shù)學(xué)思想,是教學(xué)大綱中要求學(xué)生學(xué)習(xí)的內(nèi)容之一,所以在教學(xué)中要注意這種數(shù)學(xué)思想的教學(xué)。每一種直線(xiàn)方程的講解都進(jìn)行畫(huà)圖演示,讓學(xué)生對(duì)每一種直線(xiàn)方程所需的條件根深蒂固,如點(diǎn)斜式一定要點(diǎn)和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個(gè)坐標(biāo)軸上的截距等等。并在直線(xiàn)方程的相互轉(zhuǎn)化過(guò)程中也配以圖形(請(qǐng)參考一般方程的課件)
(四)注重直線(xiàn)方程的承前啟后的作用。
教材承接了初中函數(shù)的圖像之后,并作為研究曲線(xiàn)(圓、圓錐曲線(xiàn))之前,以之來(lái)介紹平面解析幾何的思想和一般方法,可見(jiàn)本節(jié)內(nèi)容所處的重要地位,學(xué)好直線(xiàn)對(duì)以后的學(xué)習(xí)尤為重要。事實(shí)上,教材在研究了直線(xiàn)的方程和討論了直線(xiàn)的幾何性質(zhì)后,緊接著就以直線(xiàn)方程為基礎(chǔ),進(jìn)一步討論曲線(xiàn)與方程的一般概念。
看過(guò)七年級(jí)數(shù)學(xué)直線(xiàn)的方程教學(xué)反思的還看了:
1.七年級(jí)數(shù)學(xué)一元一次方程的應(yīng)用教學(xué)反思