高二數(shù)學(xué)下冊知識點(diǎn)總結(jié)
高二數(shù)學(xué)下冊知識點(diǎn)總結(jié)
凡事預(yù)則立,不預(yù)則廢。學(xué)習(xí)數(shù)學(xué)需要講究方法和技巧,更要學(xué)會(huì)對知識點(diǎn)進(jìn)行歸納整理。下面是學(xué)習(xí)啦小編為大家整理的高二數(shù)學(xué)下冊知識點(diǎn),希望對大家有所幫助!
高二數(shù)學(xué)下冊知識點(diǎn)梳理
1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
拋物線:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0時(shí)開口向上
a < 0時(shí)開口向下
c = 0時(shí)拋物線經(jīng)過原點(diǎn)
b = 0時(shí)拋物線對稱軸為y軸
還有頂點(diǎn)式y(tǒng) = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是頂點(diǎn)坐標(biāo)的x
k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長計(jì)算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計(jì)算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計(jì)算公式橢圓 的 長半徑*短半徑*PAI*高
三角函數(shù):
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式:
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式:
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:
韋達(dá)定理
判別式 b2-4a=0 注:方程有相等的兩實(shí)根
b2-4ac>0 注:方程有一個(gè)實(shí)根
b2-4ac<0 注:方程有共軛復(fù)數(shù)根
公式表達(dá)式
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'
圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h 圖形周長 面積 體積公式 長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積 已知三角形底a,高h(yuǎn),則S=ah/2 已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2 設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r 則三角形面積=(a+b+c)r/2 設(shè)三角形三邊分別為a、b、c,外接圓半徑為r 則三角形面積=abc/4r 已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶) | a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC | e f 1 | 選區(qū)取最好按逆時(shí)針順序從右上角開始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會(huì)得到負(fù)值,但不要緊,只要取絕對值就可以了,不會(huì)影響三角形面積的大小!】 秦九韶三角形中線面積公式: S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc為三角形的中線長. 平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側(cè)面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側(cè)面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內(nèi)角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)