高二數(shù)學(xué)概率知識(shí)點(diǎn)匯總
數(shù)學(xué)數(shù)學(xué)是高考的三大必考主科之一,數(shù)學(xué)成績(jī)的好壞也將直接關(guān)系到你是否能夠考入理想的大學(xué),高二數(shù)學(xué)也是整個(gè)高中數(shù)學(xué)學(xué)習(xí)承上啟下的一年,所以一定要下功夫?qū)W好數(shù)學(xué)。以下是學(xué)習(xí)啦小編為您整理的關(guān)于高二數(shù)學(xué)概率知識(shí)點(diǎn)匯總的相關(guān)資料,供您閱讀。
高二數(shù)學(xué)概率知識(shí)點(diǎn)匯總(一)
教學(xué)內(nèi)容:1、事件間的關(guān)系及運(yùn)算 2、概率的基本性質(zhì)
教學(xué)目標(biāo):
1、了解事件間各種關(guān)系的概念,會(huì)判斷事件間的關(guān)系;
2、了解兩個(gè)互斥事件的概率加法公式,知道對(duì)立事件的公式,會(huì)用公式進(jìn)行簡(jiǎn)單的概率計(jì)算;
3、通過(guò)學(xué)習(xí),進(jìn)一步體會(huì)概率思想方法應(yīng)用于實(shí)際問(wèn)題的重要性。
教學(xué)的重點(diǎn):事件間的關(guān)系,概率的加法公式。
教學(xué)的難點(diǎn):互斥事件與對(duì)立事件的區(qū)別與聯(lián)系。
教學(xué)的具體過(guò)程:
引入:上一次課我們學(xué)習(xí)了概率的意義,舉了生活中與概率知識(shí)有關(guān)的許多實(shí)例。今天我們要來(lái)研究概率的基本性質(zhì)。在研究性質(zhì)之前,我們先來(lái)一起研究一下事件之間有什么關(guān)系。
事件的關(guān)系與運(yùn)算
老師做擲骰子的實(shí)驗(yàn),學(xué)生思考,回答該試驗(yàn)包含了哪些事件(即可能出現(xiàn)的結(jié)果)
學(xué)生可能回答:﹛出現(xiàn)的點(diǎn)數(shù)=1﹜記為C1, ﹛出現(xiàn)的點(diǎn)數(shù)=2﹜記為C2, ﹛出現(xiàn)的點(diǎn)數(shù)=3﹜記為C3, ﹛出現(xiàn)的點(diǎn)數(shù)=4﹜記為C4, ﹛出現(xiàn)的點(diǎn)數(shù)=5﹜記為C5, ﹛出現(xiàn)的點(diǎn)數(shù)=6﹜記為C6.
老師:是不是只有這6個(gè)事件呢?請(qǐng)大家思考,﹛出現(xiàn)的點(diǎn)數(shù)不大于1﹜(記為D1)是不是該試驗(yàn)的事件?(學(xué)生回答:是)類似的,﹛出現(xiàn)的點(diǎn)數(shù)大于3﹜記為D2,﹛出現(xiàn)的點(diǎn)數(shù)小于5﹜記為D3,﹛出現(xiàn)的點(diǎn)數(shù)小于7﹜記為E,﹛出現(xiàn)的點(diǎn)數(shù)大于6﹜記為F,﹛出現(xiàn)的點(diǎn)數(shù)為偶數(shù)﹜記為G,﹛出現(xiàn)的點(diǎn)數(shù)為奇數(shù)﹜記為H,等等都是該試驗(yàn)的事件。 那么大家思考一下這些事件之間有什么樣的關(guān)系呢?
學(xué)生思考若事件C1發(fā)生(即出現(xiàn)點(diǎn)數(shù)為1),那么事件H是否一定也發(fā)生?
學(xué)生回答:是,因?yàn)?是奇數(shù)
我們把這種兩個(gè)事件中如果一事件發(fā)生,則另一事件一定發(fā)生的關(guān)系,稱為包含關(guān)系。具體說(shuō):一般地,對(duì)于事件A和事件B,如果事件A發(fā)生,則事件B一定發(fā)生,稱事件B包含事件A(或事件A包含于事件B),記作(或)
特殊地,不可能事件記為 ,任何事件都包含 。
練習(xí):寫出 D3與E的包含關(guān)系(D3 E)
2、再來(lái)看一下C1和D1間的關(guān)系:先考慮一下它們之間有沒(méi)有包含關(guān)系?即若C1發(fā)生,D1
是否發(fā)生?(是,即C1 D1);又若D1發(fā)生,C1是否發(fā)生?(是,即D1 C1)
兩個(gè)事件A,B中,若,那么稱事件A與事件B相等,記作A=B。所以C1 和D1相等。
“下面有同學(xué)已經(jīng)發(fā)現(xiàn)了,事件的包含關(guān)系和相等關(guān)系與集合的這兩種關(guān)系很相似,很好,下面我們就一起來(lái)考慮一下能不能把事件與集合做對(duì)比。”
試驗(yàn)的可能結(jié)果的全體 ←→ 全集
↓ ↓
每一個(gè)事件 ←→ 子集
這樣我們就把事件和集合對(duì)應(yīng)起來(lái)了,用已有的集合間關(guān)系來(lái)分析事件間的關(guān)系。
3、集合之間除了有包含和相等的關(guān)系以外,還有集合的并,由此可以推出相應(yīng)的,事件A和事件B的并事件,記作A∪B,從運(yùn)算的角度說(shuō),并事件也叫做和事件,可以記為A+B。我們知道并集A∪B中的任一個(gè)元素或者屬于集合A或者屬于集合B,類似的事件A∪B發(fā)生等價(jià)于或者事件A發(fā)生或者事件B發(fā)生。
練習(xí):G∪D3 =?G=﹛2,4,6﹜,D3 =﹛1,2,3,4﹜,所以G∪D3 =﹛1,2,3,4,6﹜。若出現(xiàn)的點(diǎn)數(shù)為1,則D3發(fā)生,G不發(fā)生;若出現(xiàn)的點(diǎn)數(shù)為4,則D3和G均發(fā)生;若出現(xiàn)的點(diǎn)數(shù)為6,則D3不發(fā)生,G發(fā)生。
由此我們可以推出事件A+B發(fā)生有三種情況:A發(fā)生,B不發(fā)生;A不發(fā)生,B發(fā)生;A和B都發(fā)生。
4、集合之間的交集A∩B,類似地有事件A和事件B的交事件,記為A∩B,從運(yùn)算的角度說(shuō),交事件也叫做積事件,記作AB。我們知道交集A∩B中的任意元素屬于集合A且屬于集合B,類似地,事件A∩B發(fā)生等價(jià)于事件A發(fā)生且事件B發(fā)生。
練習(xí):D2∩H=?(﹛大于3的奇數(shù)﹜=C5)
5、事件A與事件B的交事件的特殊情況,當(dāng)A∩B=(不可能事件)時(shí),稱事件A與事件B互斥。(即兩事件不能同時(shí)發(fā)生)
6、在兩事件互斥的條件上,再加上事件A∪事件B為必然事件,則稱事件A與事件B為對(duì)立事件。(即事件A和事件B有且只有一個(gè)發(fā)生)
練習(xí):⑴請(qǐng)?jiān)跀S骰子試驗(yàn)的事件中,找到兩個(gè)事件互為對(duì)立事件。(G,H)
?、撇豢赡苁录膶?duì)立事件
7、集合間的關(guān)系可以用Venn圖來(lái)表示,類似事件間的關(guān)系我們也可以用圖形來(lái)表示。
?。?A=B:
A∪B: A∩B:
A、B互斥: A、B對(duì)立:
8、區(qū)別互斥事件與對(duì)立事件:從圖像上我們也可以看出對(duì)立事件是互斥事件的特例,但互斥事件并非都是對(duì)立事件。
練習(xí):⑴書P121練習(xí)題目4、5
?、婆袛嘞铝惺录遣皇腔コ馐录?是不是對(duì)立事件?
某射手射擊一次,命中的環(huán)數(shù)大于8與命中的環(huán)數(shù)小于8;
統(tǒng)計(jì)一個(gè)班級(jí)數(shù)學(xué)期末考試成績(jī),平均分不低于75分與平均分不高于75分;
從裝有3個(gè)紅球和3個(gè)白球的口袋內(nèi)任取2個(gè)球,至少有一個(gè)白球和都是紅球。
答案:①是互斥事件但不是對(duì)立事件;②既不是互斥事件也不是對(duì)立事件
③既是互斥事件有是對(duì)立事件。
概率的基本性質(zhì):
提問(wèn):頻率=頻數(shù)\試驗(yàn)的次數(shù)。
我們知道當(dāng)試驗(yàn)次數(shù)足夠大時(shí),用頻率來(lái)估計(jì)概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì):
1、任何事件的概率P(A),0≦P(A)≦1
2、那大家思考,什么事件發(fā)生的概率為1,對(duì),記必然事件為E,P(E)=1
3、記不可能事件為F,P(F)=0
4、當(dāng)A與B互斥時(shí),A∪B發(fā)生的頻數(shù)等于A發(fā)生的頻數(shù)加上B發(fā)生的頻數(shù),所以
=+,所以P(A∪B)=P(A)+P(B)。
5、特別地,若A與B為對(duì)立事件,則A∪B為必然事件,P(A∪B)=1=P(A)+P(B)→P(A)=1-P(B)。
例題:教材P121例
練習(xí):由經(jīng)驗(yàn)得知,在某建設(shè)銀行營(yíng)業(yè)窗口排隊(duì)等候存取款的人數(shù)及其概率如下:
排隊(duì)人數(shù) 0 ~ 10 人 11 ~ 20 人 21 ~ 30 人 31 ~ 40 人 41人以上 概率 0.12 0.27 0.30 0.23 0.08 計(jì)算:(1)至多20人排隊(duì)的概率;
(2)至少11人排隊(duì)的概率。
三、課后思考:概率的基本性質(zhì)4,若把互斥條件去掉,即任意事件A、B,則P(A∪B)=P(A)+P(B)-P(AB)
提示:采用圖式分析。
以上就是學(xué)大教育專家對(duì)高二數(shù)學(xué)概率的基本性質(zhì)為大家做出的教學(xué)設(shè)計(jì),希望能夠?yàn)榇蠹业慕虒W(xué)帶來(lái)幫助,這是一個(gè)重要的章節(jié),老師們要重點(diǎn)的進(jìn)行講解,幫助學(xué)生進(jìn)行有效的學(xué)習(xí)。
高二數(shù)學(xué)概率知識(shí)點(diǎn)匯總(二)
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會(huì)發(fā)生的事件,叫做相對(duì)于條件S的不可能事件.
3.在條件SS的隨機(jī)事件.
二、概率和頻率
1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).
2.在相同條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA
nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
3.對(duì)于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).
三、事件的關(guān)系與運(yùn)算
四、概率的幾個(gè)基本性質(zhì)
1.概率的取值范圍:
2.必然事件的概率P(E)=
3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對(duì)立事件的概率:
若事件A與事件B互為對(duì)立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
高二數(shù)學(xué)概率知識(shí)點(diǎn)匯總相關(guān)文章:
1.高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)全
2.高二上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
3.高二數(shù)學(xué)二項(xiàng)式定理知識(shí)點(diǎn)梳理
4.高二數(shù)學(xué)必修三第三章知識(shí)點(diǎn)總結(jié)
5.高二必修三數(shù)學(xué)知識(shí)點(diǎn)歸納