2017年葫蘆島市高二文理科數(shù)學(xué)期末檢測試卷(2)
2017年葫蘆島市高二文理科數(shù)學(xué)期末檢測試卷
2017年葫蘆島市高二理科數(shù)學(xué)期末檢測試卷
一、選擇題:本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知,其中是虛數(shù)單位,則實數(shù)=( )A.-2 B.-1 C.1 D.22.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“時乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了.”丁說:“是乙獲獎.”若四位歌手的話只有一句是錯的,則獲獎的歌手是( )A.甲 B.乙 C.丙 D.丁3.函數(shù),已知在時取得極值,則值為( )A.2 B.3 C.4 D.54.已知隨機變量服從正態(tài)分布,則=( )A.0.954 B.0.977 C.0.488 D.0.4775.一個盒子里有3個分別標(biāo)有號碼為1,2,3的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是3的取法有( )A.12種 B.15種 C.17種 D.19種6.已知,則( )A.中共有項,當(dāng)時,B.中共有項,當(dāng)時,C.中共有項,當(dāng)時,D.中共有項,當(dāng)時,7.曲線在點處的切線的傾斜角為( )A. B. C. D.8.下列結(jié)論中正確的是( )A.若兩個變量的線性關(guān)系性越強,則相關(guān)系數(shù)的絕對值越接近于0B.回歸直線至少經(jīng)過樣本數(shù)據(jù)中的一個點C.獨立性檢驗得到的結(jié)論一定正確D.利用隨機變量來判斷“兩個獨立事件的關(guān)系”時,算出的值越大,判斷“有關(guān)”的把握越大9.從某高中隨機選取5名高三男生,其身高和體重的數(shù)據(jù)如下表所示:身高 160 165 170 175 180 體重 63 66 70 72 74 根據(jù)上表可得到回歸直線方程,據(jù)此模型預(yù)報身高為172的高三男生的體重為( )A.70.09 B.70.12 C.70.55 D.71.0510.設(shè)的展開式的常數(shù)項為,則直線與曲線圍成的圖形的面積為( )A. B. C.9 D.11.某高校從4名男大學(xué)生志愿者和3名女大學(xué)生志愿者中選3名派到3所學(xué)校支教(每所學(xué)校1名志愿者),要求這3名志愿者中男、女大學(xué)生都要有,則不同的選派方案共有( )A.210種 B.180種 C.150種 D.120種12.定義二元函數(shù),則的最小值為( )A. B. C. D.第Ⅱ卷(非選擇題,共90分)二、填空題:本大題共4小題,每小題5分,共20分.13.設(shè)隨機變量的概率分布列為 1 2 3 4 則= .14.從1,2,3,4,5中任取2個不同的數(shù),事件=“取到的2個數(shù)之和為偶數(shù)”,事件=“取到的2個數(shù)均為偶數(shù)”,則= .15.有一位同學(xué)在書寫英文單詞“error”時,只是記不清字母的順序,那么他寫錯這個單詞的概率為 .16.若實數(shù),滿足,則= .三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟.17.已知的展開式中第五項的系數(shù)與第三項的系數(shù)比時10:1.(1)求展開式中各項二項式系數(shù)的和;(2)求展開式中含的項.18.某校高三數(shù)學(xué)備課組為了更好地制定二輪復(fù)習(xí)的計劃,開展了試卷講評后效果的調(diào)研,從上學(xué)期期末數(shù)學(xué)試題中選出一些學(xué)生易錯題,重新進行測試,并認(rèn)為做這些題不出任何錯誤的同學(xué)為“過關(guān)”,出了錯誤的同學(xué)認(rèn)為“不過關(guān)”.現(xiàn)隨機抽查了年級50人,他們的測試成績的頻數(shù)分布如下表:
(1)由以上統(tǒng)計數(shù)據(jù)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為期末數(shù)學(xué)成績不低于90分與測試“過關(guān)”是否有關(guān)?說明你的理由;
(2)在期末分?jǐn)?shù)段的5人中,從中隨機選2人,記抽取到過關(guān)測試“過關(guān)”的人數(shù)為,求的分布列及數(shù)學(xué)期望.下面的臨界值表供參考:
19.設(shè)函數(shù),,設(shè).(1)求曲線在處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)當(dāng)時,若函數(shù)沒有零點,求的取值范圍.20.為了解葫蘆島市高三學(xué)生某次模擬考試的數(shù)學(xué)成績的某項指標(biāo),從所有成績在及格線以上(90及90分以上)的學(xué)生中抽取一部分考生對其成績進行統(tǒng)計,將成績按如下方式分成六組,第一組,第二組,…,第六組.如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組人數(shù)為4.
(1)請將頻率分布直方圖補充完整,并估計這組數(shù)據(jù)的平均數(shù);(2)現(xiàn)根據(jù)初賽成績從第四組和第六組中任意選2人,求兩個人來自同一組的概率;(3)用這部分考生的成績分布的頻率估計全市考生的成績分布,并從全是考生中隨機抽取3名考生,求成績不低于130分的人數(shù)的分布列及期望.21.已知函數(shù),;(1)討論的單調(diào)性;(2)當(dāng)時,恒成立,求的取值范圍.請考生在第22、23題中任選一題做答,如果多做,則按所做的第一題記分.做答時請寫清題號.22.在直角坐標(biāo)系中,曲線的方程為,直線的傾斜角為且經(jīng)過點.(1)以為極點,軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點,,求的值.23.已知函數(shù).(1)當(dāng)時,解不等式;(2)若,求,恒成立,求的取值范圍.
2017年高二數(shù)學(xué)(理)參考答案及評分標(biāo)準(zhǔn)一、選擇題1-5 CBDAD 6-10 DBDBB 11-12 BA二、選擇題13、 14、 15、 16、3三、解答題17、(1)解:∵通項Tr+1=(-2)rCnr ∴ =10 ∴ n2-5n-24=0 ∴ n=8或n=-3(舍) 所以各項二項式系數(shù)和為256 (2) ∵通項Tr+1=(-2)rC8r ∴ 令 =-1 得r=2 ∴展開式中含的項為T3= 18、(1)解: 分?jǐn)?shù)低于90分人數(shù) 分?jǐn)?shù)不低于90分人數(shù) 合計 過關(guān)人數(shù) 12 14 26 不過關(guān)人數(shù) 18 6 24 合計 30 20 50 K2=≈4.327>3.841 所以有95%的把握認(rèn)為期末數(shù)學(xué)成績不低于90分與測試“過關(guān)”有關(guān)(2)X的可能取值0,1,2P(X=0)= = P(X=1)= = P(X=2)= =X的分布列為:X 0 1 2 P E(X)=0×+1×+2×= 19、解(1)g(x)= , g(1)=1 切點(1,0)所以切線方程y=x-1 (2) F(x)= ax-1-lnx, F(x)= (x>0)當(dāng)a0時,F(xiàn)(x)0∴F(x)在區(qū)間(0,+)上單調(diào)遞減當(dāng)a>0時,F(xiàn)(x)在區(qū)間(0,)單調(diào)遞減,在區(qū)間(+)單調(diào)遞增---8分(3)∵a>0 ∴F(x)在區(qū)間(0,)單調(diào)遞減,在區(qū)間(,+)單調(diào)遞增∴F()=1-+lna>0∴a>1∴a的取值范圍(1,+) 20、解:(1)令第四,第五組的頻率分別為x,y,則2y=x+0.005×10且x+y=1-(0.005+0.015+0.02+0.035)×10 所以x=0.15,y=0.10 ,補充如圖 M=95×0.2+105×0.15+115×0.35+125×0.15+135×0.1+145×0.05=114.5
(2)第四組人數(shù)12,第六組人數(shù)4.所以P1== (3)在樣本中選一人成績不低于130分的概率的可能取值0,1,2,3P(=0)=(1-)3=, P(=1)=C31(1-)2=, P(=2)=C32(1-)2=P(=3) =3=所以分布列如下: 0 1 2 3 P 因為~B(3, ),故E=3×= 21、解:(1)f¢(x)=(2x-2)ex-2a(x-1)=2(x-1)(ex-a) ①當(dāng)a≤0時, ex-a>0,由f¢(x)<0得:x<1; 由f¢(x)>0得:x>1;∴f(x)在(-∞,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;②當(dāng)00得:x1; ∴f(x)在(lna,1)上單調(diào)遞減,在(-∞,lna),(1,+∞)上單調(diào)遞增;③當(dāng)a=e時, f¢(x)=2(x-1)(ex-e)≥0恒成立,所以f(x)在(-∞,+∞)上單調(diào)遞增;④當(dāng)a>e時, 由f¢(x)<0得: 10得:x<1或x>lna; ∴f(x)在(1,lna)上單調(diào)遞減,在(-∞, 1),(lna,+∞)上單調(diào)遞增;綜上,當(dāng)a≤0時, f(x)在(-∞,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增; 當(dāng)0e時, f(x)在(1,lna)上單調(diào)遞減,在(-∞, 1),(lna,+∞)上單調(diào)遞增;(2) f(x)+ag(x)≥0Û(2x-4)ex-a(x-1)2+4+a(2x2+2x+1)= (2x-4)ex+ax(x+4)+4≥0法一(討參法):令j(x)= (2x-4)ex+ax(x+4)+4則j¢(x)= (2x-2) ex+a(2x+4) =2(x+2)(·ex+a)令t(x)= ·ex則t¢(x) =( +)·ex=·ex>0在x≥0時恒成立∴t(x)在[0,+∞)上單調(diào)遞增∴t(x)≥t(0)=- 且顯然當(dāng)x®+∞時,t(x) ®+∞∴t(x)的值域為[-,+∞)①當(dāng)-a≤-即a≥時,t(x)+a≥0恒成立 又∵2(x+2)>0 ∴j¢(x)= 2(x+2)( t(x)+a)>0在x≥0時恒成立∴j(x)在[0,+∞)上單調(diào)遞增∴j(x)≥j(0)=0∴(2x-4)ex+ax(x+4)+4≥0 即f(x)+ag(x)≥0在x≥0時恒成立∴a≥時合題意;②當(dāng)-a>-即a<時∵t(x)的值域為[-,+∞) ∴必存在x0∈(0,+∞),使得t(x0)=-a當(dāng)x∈(0,x0)時,由于t(x)在上單調(diào)遞增 ∴t(x)0 ∴j¢(x)= 2(x+2)( t(x)+a)<0∴j(x)在(0,x0)上單調(diào)遞減∴j(x)0∴m(x) 在[0,+∞)上單調(diào)遞增 ∴m(x)≥m(0)=0 即t¢(x)≥0∴t(x) 在[0,+∞)上單調(diào)遞增 ∴t(x)≥t(0)=0 即j¢(x)≥0∴j(x) 在[0,+∞)上單調(diào)遞增∵j(x)= ==-(洛比塔法則)j下限(x)= j(x) =-∵-a≤在x≥0時恒成立∴-a≤j下限(x)= -即a≥∴a的取值范圍是[,+∞) 22、解:(1)x=cos,y=sin帶入(x-1)2+(y-1)2=2 ∴曲線C的極坐標(biāo)方程為=2(cos+ sin)(2)因為直線l的傾斜角為45°且經(jīng)過點P(-1,0)所以l參數(shù)方程為代入(x-1)2+(y-1)2=2化簡得t2-3t+3=0所以t1+t2=3, t1t2=3 故+= = 23、解(1) 當(dāng)x≤-2時解集(-,- ,-21時解集,+)綜上所述:f(x) ≥4解集為(-,- ,+) (2)因為|x-1|+|x+a|≥|a+1|,所以|a+1|≥5 ,a≥4所以a的取值范圍是4,+)
猜你感興趣: