高三數(shù)學(xué)總復(fù)習(xí)資料
高三數(shù)學(xué)總復(fù)習(xí)資料
考試是檢測(cè)學(xué)生學(xué)習(xí)效果的重要手段和方法,考前需要做好各方面的知識(shí)儲(chǔ)備。下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)總復(fù)習(xí)資料,希望對(duì)大家有所幫助!
高考數(shù)學(xué)考點(diǎn)總結(jié):
(1)集合:集合的運(yùn)算;
(2)復(fù)數(shù):復(fù)數(shù)的運(yùn)算或幾何意義;
(3)極坐標(biāo)與參數(shù)方程:化直角坐標(biāo);
(4)算法:
(5)解三角形:
(6)數(shù)列:等差(比)數(shù)列的概念及運(yùn)算,問(wèn)法會(huì)有創(chuàng)新;
(7)幾何證明選講:
(8)三視圖:綜合考察多面體或旋轉(zhuǎn)體的基本性質(zhì)、空間幾何元素的位置關(guān)系、表面積或體積的計(jì)算;
(9)平面向量:平面向量的概念及運(yùn)算或小綜合,或與思維方法有關(guān);
(10)二元一次不等式組有關(guān)的問(wèn)題:小綜合、問(wèn)法上會(huì)有創(chuàng)新;
(11)直線與圓:綜合在幾何證明選講或極坐標(biāo)、參數(shù)方程中考察。
(12)圓錐曲線:考察定義、幾何性質(zhì)或標(biāo)準(zhǔn)方程;
(13)排列組合、二項(xiàng)式定理:主要考察利用兩個(gè)原理或兩個(gè)計(jì)數(shù)模型計(jì)數(shù)。
(14)函數(shù):綜合、創(chuàng)新。
另外,定積分、幾何概型在近四年的高考中都出現(xiàn)了一次,也屬于容易題,在今年的備考中也要加以注意。
高考數(shù)學(xué)考點(diǎn)一:直線方程
1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是.
注:①當(dāng)或時(shí),直線垂直于軸,它的斜率不存在.
?、诿恳粭l直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時(shí),其傾斜角也對(duì)應(yīng)確定.
2. 直線方程的幾種形式:點(diǎn)斜式、截距式、兩點(diǎn)式、斜切式.
特別地,當(dāng)直線經(jīng)過(guò)兩點(diǎn),即直線在軸,軸上的截距分別為時(shí),直線方程是:.
注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.
附:直線系:對(duì)于直線的斜截式方程,當(dāng)均為確定的數(shù)值時(shí),它表示一條確定的直線,如果變化時(shí),對(duì)應(yīng)的直線也會(huì)變化.①當(dāng)為定植,變化時(shí),它們表示過(guò)定點(diǎn)(0,)的直線束.②當(dāng)為定值,變化時(shí),它們表示一組平行直線.
3. ⑴兩條直線平行:
∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個(gè)“前提”都會(huì)導(dǎo)致結(jié)論的錯(cuò)誤.
(一般的結(jié)論是:對(duì)于兩條直線,它們?cè)谳S上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)
推論:如果兩條直線的傾斜角為則∥.
?、苾蓷l直線垂直:
兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)
4. 直線的交角:
?、胖本€到的角(方向角);直線到的角,是指直線繞交點(diǎn)依逆時(shí)針?lè)较蛐D(zhuǎn)到與重合時(shí)所轉(zhuǎn)動(dòng)的角,它的范圍是,當(dāng)時(shí).
⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個(gè)角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.
5. 過(guò)兩直線的交點(diǎn)的直線系方程為參數(shù),不包括在內(nèi))
高考數(shù)學(xué)考點(diǎn)二:軌跡方程
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
?、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫(xiě)出點(diǎn)M的集合;
?、沉谐龇匠?0;
?、椿?jiǎn)方程為最簡(jiǎn)形式;
⒌檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
?、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
?、到卉壏ǎ簩蓜?dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
高考數(shù)學(xué)考點(diǎn)三:導(dǎo)數(shù)
一、函數(shù)的單調(diào)性
在(a,b)內(nèi)可導(dǎo)函數(shù)f(x),f′(x)在(a,b)任意子區(qū)間內(nèi)都不恒等于0.
f′(x)≥0⇔f(x)在(a,b)上為增函數(shù).
f′(x)≤0⇔f(x)在(a,b)上為減函數(shù).
二、函數(shù)的極值
1、函數(shù)的極小值:
函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其它點(diǎn)的函數(shù)值都小,f′(a)=0,而且在點(diǎn)x=a附近的左側(cè)f′(x)<0,右側(cè)f′(x)>0,則點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值.
2、函數(shù)的極大值:
函數(shù)y=f(x)在點(diǎn)x=b的函數(shù)值f(b)比它在點(diǎn)x=b附近的其他點(diǎn)的函數(shù)值都大,f′(b)=0,而且在點(diǎn)x=b附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,則點(diǎn)b叫做函數(shù)y=f(x)的極大值點(diǎn),f(b)叫做函數(shù)y=f(x)的極大值.
極小值點(diǎn),極大值點(diǎn)統(tǒng)稱為極值點(diǎn),極大值和極小值統(tǒng)稱為極值.
三、函數(shù)的最值
1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.
2、若函數(shù)f(x)在[a,b]上單調(diào)遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的最大值;若函數(shù)f(x)在[a,b]上單調(diào)遞減,則f(a)為函數(shù)的最大值,f(b)為函數(shù)的最小值.
四、求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法
1、確定函數(shù)f(x)的定義域;
2、求f′(x),令f′(x)=0,求出它在定義域內(nèi)的一切實(shí)數(shù)根;
3、把函數(shù)f(x)的間斷點(diǎn)(即f(x)的無(wú)定義點(diǎn))的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來(lái),然后用這些點(diǎn)把函數(shù)f(x)的定義區(qū)間分成若干個(gè)小區(qū)間;
4、確定f′(x)在各個(gè)開(kāi)區(qū)間內(nèi)的符號(hào),根據(jù)f′(x)的符號(hào)判定函數(shù)f(x)在每個(gè)相應(yīng)小開(kāi)區(qū)間內(nèi)的增減性.
高考數(shù)學(xué)考點(diǎn)四:不等式
(1)理解不等式的性質(zhì)及其證明。
【導(dǎo)讀】
不等式的性質(zhì)是不等式的理論支撐,其基礎(chǔ)性質(zhì)源于數(shù)的大小比較。要注意以下幾點(diǎn):
加強(qiáng)化歸意識(shí),把比較大小問(wèn)題轉(zhuǎn)化為實(shí)數(shù)的運(yùn)算;
通過(guò)復(fù)習(xí)強(qiáng)化不等式“運(yùn)算”的條件。如a>b、才c>d在什么條件下才能推出ac>bd;
強(qiáng)化函數(shù)的性質(zhì)在大小比較中的重要作用,加強(qiáng)知識(shí)間的聯(lián)系;
不等式的性質(zhì)是解、證不等式的基礎(chǔ),對(duì)任意兩實(shí)數(shù)a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a
一定要在理解的基礎(chǔ)上記準(zhǔn)、記熟不等式的性質(zhì),并注意解題中靈活、準(zhǔn)確地加以應(yīng)用;
對(duì)兩個(gè)(或兩個(gè)以上)不等式同加(或同乘)時(shí)一定要注意不等式是否同向(且大于零);
對(duì)于含參問(wèn)題的大小比較要注意分類(lèi)討論。
(2)掌握兩個(gè)(不擴(kuò)展到三個(gè))正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會(huì)簡(jiǎn)單的應(yīng)用。
【導(dǎo)讀】
1、在證明不等式的各種方法中,作差比較法是一種最基本最重要的方法,它是利用不等式兩邊的差是正數(shù)還是負(fù)數(shù)來(lái)證明不等式,其應(yīng)用非常廣泛,一定要熟練掌握。
2、對(duì)于公式a+b≥ 2√ab,ab≤(a+b/2)2要理解它們的作用和使用條件及內(nèi)在聯(lián)系,兩個(gè)公式也體現(xiàn)了ab和a+b的轉(zhuǎn)化關(guān)系。
3、在應(yīng)用均值定理求最值時(shí),要把握定理成立的三個(gè)條件就是“一正——各項(xiàng)均為正;二定——積或和為定值;三項(xiàng)等——等號(hào)能否取得”。若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤。
(3)掌握分析法、綜合法、比較法證明的簡(jiǎn)單不等式。
【導(dǎo)讀】
1、在證明不等式的過(guò)程中,分析法和綜合法是不能分離的,如果使用綜合法證明不等式難以入手時(shí),常用分析法探索證題途徑,之后用綜合法的形式寫(xiě)出它的證明過(guò)程。有時(shí)問(wèn)題證明難度較大,常使用分析綜合法,實(shí)現(xiàn)兩頭往中間靠以達(dá)到證明目的。
2、由于高考試題不會(huì)出現(xiàn)單一的不等式的證明題,常常與函數(shù)、數(shù)列、三角、方程綜合在一起,所以在學(xué)習(xí)中,不等式的證明除常用的三種方法外,還有其他方法,比如比較大小。證明不等式的常用方法有:差、商比較法、函數(shù)性質(zhì)法、分析綜合法和放縮法。要能了解常見(jiàn)的放縮途徑,如:利用增或舍、分式性質(zhì)、函數(shù)單調(diào)性、有界性、基本不等式及絕對(duì)值不等式性質(zhì)和數(shù)學(xué)歸納法等。有時(shí)要先對(duì)不等式作等價(jià)變形再進(jìn)行證明,有時(shí)幾種證明方法綜合使用。
3、比較法有兩種形式:一是作差,而是作商。用作差法證明不等式是證明不等式中最基本、最常用的方法。它的依據(jù)是不等式的基本性質(zhì)。步驟是:作差(商)→變形→判斷。變形的目的是為了判斷,若是作差,就判斷與0的大小關(guān)系,為了便于判斷,往往把形式變?yōu)榉e或完全平方式。若是作商,兩邊為正,就判斷與1的大小關(guān)系。
高考數(shù)學(xué)考點(diǎn)五:幾何
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
看過(guò)"高三數(shù)學(xué)總復(fù)習(xí)資料 "的還看了:
1.高三數(shù)學(xué)復(fù)習(xí)資料匯總