高三數(shù)學(xué)數(shù)列公式
高三數(shù)學(xué)數(shù)列公式
數(shù)列的重要性體現(xiàn)在多個(gè)方面,其在高中教科書上占據(jù)一整章的篇幅,也是高考數(shù)學(xué)考試??嫉膬?nèi)容,下面是學(xué)習(xí)啦小編給大家?guī)淼母呷龜?shù)學(xué)數(shù)列公式,希望對(duì)你有幫助。
高三數(shù)學(xué)數(shù)列公式歸納
等差數(shù)列
(1)數(shù)列的通項(xiàng)公式an=f(n)
(2)數(shù)列的遞推公式
(3)數(shù)列的通項(xiàng)公式與前n項(xiàng)和的關(guān)系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al
等比數(shù)列 常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal
不等式
不等式的基本性質(zhì) 重要不等式
a>b b
a>b,b>c a>c
a>b a+c>b+c
a+b>c a>c-b
a>b,c>d a+c>b+d
a>b,c>0 ac>bc
a>b,c<0 ac
a>b>0,c>d>0 ac
a>b>0 dn>bn(n∈Z,n>1)
a>b>0 > (n∈Z,n>1)
(a-b)2≥0
a,b∈R a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
證明不等式的基本方法
比較法
(1)要證明不等式a>b(或a
a-b>0(或a-b<0=即可
(2)若b>0,要證a>b,只需證明 ,
要證a
綜合法 綜合法就是從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式(由因?qū)Ч?的方法。
分析法 分析法是從尋求結(jié)論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正確時(shí)為止,明顯地表現(xiàn)出“持果索因”。