六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

2017高三數(shù)學(xué)總復(fù)習(xí)資料

時(shí)間: 鳳婷983 分享

  要提高高三數(shù)學(xué)的復(fù)習(xí)效率,就必須合理利用復(fù)習(xí)資料,下面是學(xué)習(xí)啦小編給大家?guī)淼母呷龜?shù)學(xué)總復(fù)習(xí)資料,希望對(duì)你有幫助。

  高三數(shù)學(xué)總復(fù)習(xí)資料:立體幾何

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

  (3)棱臺(tái):

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.

  (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.

  高三數(shù)學(xué)總復(fù)習(xí)資料:直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 ?、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.

 ?、谶^兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.

  (3)直線方程

 ?、冱c(diǎn)斜式:直線斜率k,且過點(diǎn)

  注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.

  當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

 ?、谛苯厥剑?直線斜率為k,直線在y軸上的截距為b

 ?、蹆牲c(diǎn)式:()直線兩點(diǎn),

 ?、芙鼐厥剑?/p>

  其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

 ?、菀话闶剑?A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點(diǎn)的直線系

  (ⅰ)斜率為k的直線系:,直線過定點(diǎn);

  (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

  (為參數(shù)),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.

  高三數(shù)學(xué)總復(fù)習(xí)資料:圓的方程

  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

  當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

  (3)求圓方程的方法

  一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.


看了<2017高三數(shù)學(xué)總復(fù)習(xí)資料>的人還看了:

1.2017年高三數(shù)學(xué)復(fù)習(xí)重點(diǎn)總結(jié)

2.2017高考數(shù)學(xué)復(fù)習(xí)資料

3.2017高三數(shù)學(xué)總復(fù)習(xí)技巧

4.2017高三數(shù)學(xué)第一輪復(fù)習(xí)方法和內(nèi)容

5.2017高三數(shù)學(xué)組復(fù)習(xí)教學(xué)計(jì)劃

6.2017高三數(shù)學(xué)一輪復(fù)習(xí)建議

3038764