六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 2017年高考北京卷文數(shù)試題和答案(2)

2017年高考北京卷文數(shù)試題和答案(2)

時(shí)間: 夏萍1132 分享

2017年高考北京卷文數(shù)試題和答案

  2017年高考北京卷文數(shù)試題解析版

  一、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。

  (1)已知,集合,則

  (A) (B)

  (C) (D)

  (2)若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是

  (A) (B)

  (C) (D)

  ,因?yàn)閷?yīng)的點(diǎn)在第二象限,所以 ,解得:,故選B.

  【考點(diǎn)】復(fù)數(shù)的運(yùn)算

  【名師點(diǎn)睛】復(fù)數(shù)的分類及對應(yīng)點(diǎn)的位置問題都可以轉(zhuǎn)化為復(fù)數(shù)的實(shí)部與虛部應(yīng)該滿足的條件問題,只需把復(fù)數(shù)化為代數(shù)形式,列出實(shí)部和虛部滿足的方程(不等式)組即可.復(fù)數(shù)z=a+bi復(fù)平面內(nèi)的點(diǎn)Z(a,b)(a,bR).復(fù)數(shù)z=a+bi(a,bR) 平面向量.

  (3)執(zhí)行如圖所示的程序框圖,輸出的值為

  (A)2 (B)

  (C) (D)

  (4)若滿足則的最大值為

  (A)1 (B)3

  (C)5 (D)9

  (5)已知函數(shù),則

  (A)是偶函數(shù),且在R上是增函數(shù)

  (B)是奇函數(shù),且在R上是增函數(shù)

  (C)是偶函數(shù),且在R上是減函數(shù)

  (D)是奇函數(shù),且在R上是增函數(shù)

  ,所以函數(shù)是奇函數(shù),并且是增函數(shù),

  (6)某三棱錐的三視圖如圖所示,則該三棱錐的體積為

  (A)60 (B)30

  (C)20 (D)10

  圖中紅色線圍成的幾何體為所求幾何體,該幾何體的體積是,故選D.

  【考點(diǎn)】1.三視圖;2.幾何體的體積.

  【名師點(diǎn)睛】本題考查了空間想象能力,由三視圖還原幾何體的方法:

  (7)設(shè)m, n為非零向量,則“存在負(fù)數(shù),使得m=λn”是“m·n<0”的

  (A)充分而不必要條件 (B)必要而不充分條件

  (C)充分必要條件 (D)既不充分也不必要條件

  (8)根據(jù)有關(guān)資料,圍棋狀態(tài)空間復(fù)雜度的上限M約為3361,而可觀測宇宙中普通物質(zhì)的原子總數(shù)N約為1080.則下列各數(shù)中與最接近的是

  (參考數(shù)據(jù):lg3≈0.48)

  (A)1033 (B)1053

  (C)1073 (D)1093

  第二部分(非選擇題 共110分)

  二、填空題共6小題,每小題5分,共30分。

  (9)在平面直角坐標(biāo)系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若sin=,則sin=_________.

  【解析】

  試題分析:與關(guān)于軸對稱,則 ,所以

  【考點(diǎn)】誘導(dǎo)公式

  【名師點(diǎn)睛】本題考查了角的對稱的關(guān)系,以及誘導(dǎo)公式,常用的一些對稱關(guān)系包含,與關(guān)于軸對稱,則 ,若與關(guān)于 軸對稱,則 ,若與關(guān)于原點(diǎn)對稱,則 ,

  (10)若雙曲線的離心率為,則實(shí)數(shù)m=__________.

  2

  (11)已知,,且x+y=1,則的取值范圍是__________.

  【解析】

  試題分析: ,所以當(dāng)時(shí),取最大值當(dāng) 時(shí),取最值取值范圍為

  【名師點(diǎn)睛】本題考查了轉(zhuǎn)化與化歸的能力,除了象本題的方法,轉(zhuǎn)化為二次函數(shù)求取值范圍,也可以轉(zhuǎn)化為幾何關(guān)系求取值范圍,當(dāng),表示線段,那么的幾何意義就是線段上的點(diǎn)到原點(diǎn)距離的平方,這樣會更加簡單.

  (12)已知點(diǎn)P在圓上,點(diǎn)A的坐標(biāo)為(-2,0),O為原點(diǎn),則的最大值為_________.

  所以最大值是6.

  【考點(diǎn)】1.向量數(shù)量積;2.向量與平面幾何

  【名師點(diǎn)睛】本題考查了轉(zhuǎn)化與化歸能力,因?yàn)槭谴_定的,所以根據(jù)向量數(shù)量積的幾何意義若最大,即向量在方向上的投影 最大,根據(jù)數(shù)形結(jié)合分析可得當(dāng)點(diǎn)在圓與軸的右側(cè)交點(diǎn)處時(shí)最大,根據(jù)幾何意義直接得到運(yùn)算結(jié)果.

  (13)能夠說明“設(shè)a,b,c是任意實(shí)數(shù).若a>b>c,則a+b>c”是假命題的一組整數(shù)a,b,c的值依次為______________________________.

  -1,-2,-3(14)某學(xué)習(xí)小組由學(xué)生和教師組成,人員構(gòu)成同時(shí)滿足以下三個(gè)條件:

  (ⅰ)男學(xué)生人數(shù)多于女學(xué)生人數(shù);

  (ⅱ)女學(xué)生人數(shù)多于教師人數(shù);

  (ⅲ)教師人數(shù)的兩倍多于男學(xué)生人數(shù).

 ?、偃艚處熑藬?shù)為4,則女學(xué)生人數(shù)的最大值為__________.

 ?、谠撔〗M人數(shù)的最小值為__________.

  6,12

  【解析】設(shè)男生數(shù),女生,教師數(shù)為 則

  小問:

  小問:

  三、解答題共6小題,共80分解答應(yīng)寫出文字說明,演算步驟或證明過程。

  (15)(本小題13分)

  已知等差數(shù)列和等比數(shù)列滿足a1=b1=1,a2+a4=10,b2b4=a5.

  (Ⅰ)求的通項(xiàng)公式;

  (Ⅱ)求和:.

  ;(Ⅱ).

  (16)(本小題13分)

  已知函數(shù).

  (I)f(x)的最小正周期;

  (II)求證:當(dāng)時(shí),.

  ;(Ⅱ)詳見解析.

  【解析】

  試題分析:(Ⅰ)首先根據(jù)兩角差的余弦公式化簡,再根據(jù)輔助角公式化簡為 ,根據(jù)公式求周期;(Ⅱ)當(dāng)時(shí),先求的范圍再求函數(shù)的最小值.

  (17(本小題13分)

  某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

  (Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

  (Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

  (Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

  .

  【考點(diǎn)】頻率分布直方圖的應(yīng)用

  【名師點(diǎn)睛】1.用樣本估計(jì)總體是統(tǒng)計(jì)的基本思想而利用頻率分布表和頻率分布直方圖來估計(jì)總體則是用樣本的頻率分布去估計(jì)總體分布的兩種主要方法.分布表在數(shù)量表示上比較準(zhǔn)確直方圖比較直觀.

  2頻率分布表中的頻數(shù)之和等于樣本容量各組中的頻率之和等于1;在頻率分布直方圖中各小長方形的面積表示相應(yīng)各組的頻率所以所有小長方形的面積的和等于1.

  (18)(本小題14分)

  如圖,在三棱錐P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

  (Ⅰ)求證:PA⊥BD;

  (Ⅱ)求證:平面BDE⊥平面PAC;

  (Ⅲ)當(dāng)PA∥平面BDE時(shí),求三棱錐E–BCD的體積.

  (19)(本小題14分)

  已知橢圓C的兩個(gè)頂點(diǎn)分別為A(−2,0),B(2,0),焦點(diǎn)在x軸上,離心率為.

  (Ⅰ)求橢圓C的方程;

  (Ⅱ)點(diǎn)D為x軸上一點(diǎn),過D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過D作AM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5.

  ;(Ⅱ)詳見解析.

  聯(lián)立解得點(diǎn)的縱坐標(biāo).

  由點(diǎn)在橢圓上,得.

  所以.

  又,

  ,

  所以與的面積之比為.

  【考點(diǎn)】1.橢圓方程2.直線與橢圓的位置關(guān)系.

  【名師點(diǎn)睛】本題對考生計(jì)算能力要求較高,重點(diǎn)考察了計(jì)算能力,以及轉(zhuǎn)化與化歸的能力,解答此類題目,利用的關(guān)系,確定橢圓方程是基礎(chǔ),通過聯(lián)立直線方程與橢圓(圓錐曲線)方程的方程組,一般都是根據(jù)根與系數(shù)的關(guān)系解題,但本題需求解交點(diǎn)坐標(biāo),再根據(jù)面積的幾何關(guān)系,從而求解面積比值,計(jì)算結(jié)果,本題易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)漏百出..本題能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等.

  (20)(本小題13分)

  已知函數(shù).

  (Ⅰ)求曲線在點(diǎn)處的切線方程;

  (Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值.;(Ⅱ)最大值1;最小值.


猜你感興趣:

1.17年北京高考數(shù)學(xué)試卷

2.2017北京數(shù)學(xué)高考試卷

3.2017北京高考?xì)v史試卷

4.2017北京高考文科歷史試卷

5.2017北京卷高考數(shù)學(xué)

6.2017北京數(shù)學(xué)高考題及答案

3785744