六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數學 > 2016年高考數學復習資料

2016年高考數學復習資料

時間: 淑航658 分享

2016年高考數學復習資料

  做好數學資料的復習,會讓你在高考考試中如魚得水。下面是學習啦小編網絡整理的2016年高考數學復習資料以供大家學習。

  2016年高考數學復習資料(一)

  定義:

  形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

  定義域和值域:

  當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

  性質:

  對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

  排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

  總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:

  如果a為任意實數,則函數的定義域為大于0的所有實數;

  如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

  在x大于0時,函數的值域總是大于0的實數。

  在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

  而只有a為正數,0才進入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。

  2016年高考數學復習資料(二)

  1.導數的常規(guī)問題:

  (1)刻畫函數(比初等方法精確細微);(2)同幾何中切線聯系(導數方法可用于研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關于次多項式的導數問題屬于較難類型。

  2.關于函數特征,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

  3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個方向,應引起注意。

  知識整合

  1.導數概念的理解。

  2.利用導數判別可導函數的極值的方法及求一些實際問題的最大值與最小值。

  復合函數的求導法則是微積分中的重點與難點內容。課本中先通過實例,引出復合函數的求導法則,接下來對法則進行了證明。

  3.要能正確求導,必須做到以下兩點:

  (1)熟練掌握各基本初等函數的求導公式以及和、差、積、商的求導法則,復合函數的求導法則。

  (2)對于一個復合函數,一定要理清中間的復合關系,弄清各分解函數中應對哪個變量求導。

  2016年高考數學復習資料(三)

  值域

  名稱定義:函數中,應變量的取值范圍叫做這個函數的值域函數的值域,在數學中是函數在定義域中應變量所有值的集合

  常用的求值域的方法

  (1)化歸法;

  (2)圖象法(數形結合),

  (3)函數單調性法,

  (4)配方法,

  (5)換元法,

  (6)反函數法(逆求法),

  (7)判別式法,

  (8)復合函數法,

  (9)三角代換法,

  (10)基本不等式法等

  關于函數值域誤區(qū)

  定義域、對應法則、值域是函數構造的三個基本“元件”。平時數學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數的掌握時好時壞,事實上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時處于互相轉化之中(典型的例子是互為反函數定義域與值域的相互轉化)。如果函數的值域是無限集的話,那么求函數值域不總是容易的,反靠不等式的運算性質有時并不能奏效,還必須聯系函數的奇偶性、單調性、有界性、周期性來考慮函數的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數本質的認識。

489160