六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一必修數(shù)學(xué)知識歸納

時間: 文娟843 分享

  高一數(shù)學(xué)必修一的學(xué)習(xí),是大家進(jìn)行高中數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),所以同學(xué)們必須學(xué)好這部分知識,打好數(shù)學(xué)學(xué)習(xí)的堅實基礎(chǔ)。下面就讓學(xué)習(xí)啦小編給大家分享一些高一必修數(shù)學(xué)知識歸納吧,希望能對你有幫助!

  高一必修數(shù)學(xué)知識歸納篇一

  一:集合的含義與表示

  1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。

  把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

  2、集合的中元素的三個特性:

  (1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。

  (2)元素的互異性:一個給定集合中的元素是唯一的,不可重復(fù)的。

  (3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

  3、集合的表示:{…}

  (1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

  b、描述法:

 ?、賲^(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

  {xR|x-3>2},{x|x-3>2}

 ?、谡Z言描述法:例:{不是直角三角形的三角形}

 ?、踁enn圖:畫出一條封閉的曲線,曲線里面表示集合。

  4、集合的分類:

  (1)有限集:含有有限個元素的集合

  (2)無限集:含有無限個元素的集合

  (3)空集:不含任何元素的集合

  5、元素與集合的關(guān)系:

  (1)元素在集合里,則元素屬于集合,即:aA

  (2)元素不在集合里,則元素不屬于集合,即:a¢A

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+

  整數(shù)集Z

  有理數(shù)集Q

  實數(shù)集R

  高一必修數(shù)學(xué)知識歸納篇二

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形.

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形.

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 ?、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半.

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和.

  (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

  (3)柱體、錐體、臺體的體積公式

  高一必修數(shù)學(xué)知識歸納篇三

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 ?、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

  ②過兩點的直線的斜率公式:

  注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

  (3)直線方程

 ?、冱c斜式:直線斜率k,且過點

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

  ②斜截式:,直線斜率為k,直線在y軸上的截距為b

 ?、蹆牲c式:()直線兩點,

 ?、芙鼐厥剑?/p>

  其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

 ?、菀话闶剑?A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點的直線系

  (ⅰ)斜率為k的直線系:,直線過定點;

  (ⅱ)過兩條直線,的交點的直線系方程為

  (為參數(shù)),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

  (7)兩條直線的交點

  相交

  交點坐標(biāo)即方程組的一組解.

  方程組無解;方程組有無數(shù)解與重合

  (8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點

  (9)點到直線距離公式:一點到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進(jìn)行求解.


看了高一必修數(shù)學(xué)知識歸納的人還看:

1.高中數(shù)學(xué)必修三角函數(shù)常用公式總結(jié)

2.新人教版高一數(shù)學(xué)函數(shù)與方程知識要點

3.高考數(shù)學(xué)三角函數(shù)知識點歸納

4.高中數(shù)學(xué)必修一知識點框架圖

5.高一數(shù)學(xué)第一章集合知識點歸納

6.高中數(shù)學(xué)必修一集合與函數(shù)知識點

1235995