六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)必修1公式總結(jié)

高一數(shù)學(xué)必修1公式總結(jié)

時(shí)間: 文娟843 分享

高一數(shù)學(xué)必修1公式總結(jié)

  學(xué)習(xí)數(shù)學(xué)需要講究方法和技巧,更要學(xué)會對知識點(diǎn)進(jìn)行歸納整理。下面是學(xué)習(xí)啦小編為大家整理的高一數(shù)學(xué)必修1公式,希望對大家有所幫助!

  高一數(shù)學(xué)必修1公式總結(jié)

  三角函數(shù)公式

  兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  積化和差 2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)

  -2sinAsinB=cos(A+B)-cos(A-B)

  和差化積 sinA+sinB=2sin((A+B)/2)cos((A-B)/2

  cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB

  tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgB=sin(A+B)/sinAsinB

  -ctgA+ctgB=sin(A+B)/sinAsin

  集合與函數(shù)概念

  一,集合有關(guān)概念

  1,集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.

  2,集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無序性

  說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3,集合的表示:{ … } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意啊:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:n

  正整數(shù)集 n*或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r

  關(guān)于"屬于"的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a(a

  列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上.

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.

 ?、僬Z言描述法:例:{不是直角三角形的三角形}

 ?、跀?shù)學(xué)式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}

  4,集合的分類:

  1.有限集 含有有限個(gè)元素的集合

  2.無限集 含有無限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二,集合間的基本關(guān)系

  1."包含"關(guān)系—子集

  注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合.

  反之: 集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

  2."相等"關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) a={x|x2-1=0} b={-1,1} "元素相同"

  結(jié)論:對于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,即:a=b

 ?、?任何一個(gè)集合是它本身的子集.a(a

 ?、谡孀蛹?如果a(b,且a( b那就說集合a是集合b的真子集,記作ab(或ba)

 ?、廴绻?a(b, b(c ,那么 a(c

 ?、?如果a(b 同時(shí) b(a 那么a=b

  3. 不含任何元素的集合叫做空集,記為φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三,集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.

  記作a∩b(讀作"a交b"),即a∩b={x|x∈a,且x∈b}.

  2,并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a∪b(讀作"a并b"),即a∪b={x|x∈a,或x∈b}.

  3,交集與并集的性質(zhì):a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.

  4,全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

  記作: csa 即 csa ={x ( x(s且 x(a}

  (2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用u來表示.

  (3)性質(zhì):⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u
看過" 高一數(shù)學(xué)必修1公式總結(jié) "的還看了:

1.高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)

2.高一數(shù)學(xué)知識點(diǎn)總結(jié)

3.高一數(shù)學(xué)必修1函數(shù)的知識點(diǎn)

1278607